
1

1 Contents

Preface... 4

1 Basic Concepts .. 4

1.1 Robot System Overview ... 4

1.2 Operating Environment ... 5

1.3 Classification of Robots .. 5

1.4 Coordinate System .. 6

1.4.1 Joint Coordinate System .. 7

1.4.2 Base Coordinate System .. 7

1.4.3 Tool Coordinate System ... 8

1.4.4 User Coordinate System .. 8

1.4.5 Other Coordinate Systems .. 9

1.5 Position Variables .. 9

1.5.1 Overview ... 9

1.5.2 Storage Format of Position Variable .. 10

1.5.3 Attributes of Position Variables ... 10

1.5.4 Position Variables for Special Processes .. 15

1.6 Offset ... 15

1.6.1 Joint Offset .. 15

1.6.2 Offset Along the Current Tool Pose ... 16

1.6.3 Offset in a Cartesian Frame ... 16

1.7 Interpolation and Transition .. 16

1.8 Singular Position ... 17

1.9 Motion Range and Interference Area .. 18

2 Getting Started .. 19

2.1 Operating Process.. 19

2.2 Power-On and Connection .. 19

2.3 User Login... 21

2.4 Status Check .. 24

2.5 Robot Manipulation .. 26

3 Programming and Running ... 28

3.1 Basic Features on Main Interface .. 28

3.2 Project Manager .. 34

3.3 Editing the Project ... 41

3.4 Debugging ... 58

3.5 Play Mode ... 63

3.6 Viewing Project Under Other Controls ... 65

3.7 Example: Programming and Running a Project .. 65

3.8 Shortcut Keys .. 71

4 Settings .. 71

4.1 Robot Settings ... 72

4.2 Zero Point Settings .. 72

4.2.1 Absolute Zero Point ... 72

2

4.2.2 Work Origin ... 73

4.2.3 Zeroing... 74

4.3 Installation Parameter Settings .. 80

4.4 Motion Settings ... 81

4.5 Peripheral Settings .. 94

4.5.1 Bus Switch ... 94

4.5.2 I/O Mapping .. 97

4.5.3 Project ID Settings ... 100

4.5.4 IRLink Settings ... 102

4.6 System Settings ... 106

4.7 Extended Functions ... 126

5 Monitoring .. 126

5.1 Basic Operations ... 126

5.2 Global Variable Monitoring .. 128

5.3 I/O Monitoring .. 131

5.3.1 Introduction of Robot Bus Address ... 131

5.3.2 How to Use I/O Monitoring ... 132

5.4 Communication state ... 139

5.4.1 Device Connection .. 139

5.4.2 Bus Monitoring .. 140

5.5 Servo State .. 142

5.6 Log .. 143

5.7 Version .. 143

5.8 Current Protection ... 144

6 Process Application ... 144

6.1 Tracking Process ... 144

6.1.1 Overview ... 144

6.1.2 Hardware Configuration .. 146

6.1.3 Coordinate System Setting .. 147

6.1.4 Parameter Setting .. 149

6.1.5 Tracking Instructions ... 158

6.1.6 Application Cases .. 162

6.2 Vision Calibration ... 164

6.2.1 Overview ... 164

6.2.2 Vision Calibration of SCARA Robots .. 165

6.2.3 Vision Calibration of 6-Axis Robots ... 166

6.2.4 Eye-to-Hand Overlook Calibration ... 168

6.2.5 Eye-to-Hand Look-up Calibration .. 174

6.2.6 Eye-on-Hand J2 Calibration ... 176

6.2.7 Eye-on-Hand J4 Calibration ... 178

6.2.8 Eye-on-Hand J5 Calibration ... 179

6.2.9 Eye-on-Hand J6 Calibration ... 181

6.2.10 Calibration Result Verification ... 182

7 Others.. 184

3

7.1 TCP multi-port connectivity .. 184

7.2 Permission Management ... 184

7.2.1 Robot Control Permissions .. 184

7.2.2 IRLink Configuration Permissions .. 186

7.2.3 I/O Control Permissions... 186

7.2.4 Modbus Configuration Permissions .. 187

7.3 Multitasking .. 187

7.3.1 Task Description .. 187

7.3.2 Use of Multitasking ... 189

7.3.3 Multitasking Alarms .. 191

7.4 Flying Trigger ... 191

7.5 Teach Pendant Synchronization .. 193

7.6 Retentive Memory ... 193

7.7 Safety door .. 194

7.8 Current Protection ... 196

7.9 API .. 200

7.9.1 Description of API Call ... 200

7.9.2 Typical Application Cases .. 204

7.10 Pose Calibration .. 210

7.11 Optimal Trajectory .. 211

7.11.1 Description .. 211

7.11.2 Commissioning Procedure... 211

7.11.3 Example ... 212

7.12 Self-Learning Vibration Suppression .. 212

7.12.1 Description .. 212

7.12.2 Related Instructions .. 213

7.12.3 Backup, loading, recovery, and clearing of self-learning data 216

7.12.4 Example ... 221

7.13 Releasing Dynamic Brake ... 222

Appendix 1: Robot Alarms and Handling Method .. 223

Appendix 2: API Instructions and Connection Fault Table API Instructions 293

(1) API Instructions .. 293

(2) API Connection Failure Table ... 327

Appendix 3: Modbus Slave Address Table... 331

Appendix 4: Servo Commissioning .. 356

Appendix 5: Simple Calculation of Load Parameters .. 370

4

Teach Pendant User Guide

Preface

This guide is intended to help readers learn how to program the Inovance robots on the teach

pendant.

Document

version
Release date

Teach pendant

version

Controller

version

InoRobotLab

version

S03.21R
November

07, 2021
S03.21R S03.21R

S03.21R

1 Basic Concepts

1.1 Robot System Overview

The robot system consists of human-machine interface (HMI) software, robot controller (including

teach pendant), robot manipulator and secondary development software.

Components Description

HMI software  Teaching software: InoTeachPad (can be installed on 7-inch

handheld teach pendant IRTP80, as well PC)

 PC platform software: InoRobotLab

Robot controller

(including teach

pendant)

Configures, programs, and monitors operation of the robot. You can

control the motion of the robot through the HMI software or other

control devices.

Manipulator The actuator of the robot system, the motion of which is controlled

through the controller.

This document describes operations performed on the teach pendant.

5

1.2 Operating Environment

Handheld teach pendent:

The teaching software is embedded in teach pendant IRTP80 at factory. No additional operating

environment configuration is needed.

PC-based teach pendant:

The teaching software is installation-free on the PC. The PC must meet the following

requirements:

Operating system: Win XP and above

Memory: At least 128 MB

Resolution: 1024*768 and above

Runtime environment: Visual C++ Redistributable Package (Microsoft Visual C++ Redistributable

Package.exe should be installed if the runtime environment is missing.)

1.3 Classification of Robots

Robots can be classified based on the number of axes, series/parallel characteristics, etc. The

following table lists several common robots:

Name Type
Number

of axes
Serial/Parallel Features Application

6-axis

robot
 6 Serial

Extremely

flexible and

suitable for

working with

virtually any

trajectory or

angle.

Loading, painting,

measuring, arc

welding, spot welding,

packaging, assembly,

forging, casting, etc.

SCARA

robot
 4 Serial

Lightweight

structure and

fast response

Mechanical assembly,

material distribution

and dispensing, robot

assembly, labeling,

placement, dispensing,

etc. in 3C industry.

6

Delta

robot
 4 Parallel

High precision,

fast speed

Handling, sorting, etc.

of pharmaceutical and

food products.

1.4 Coordinate System

Seven coordinate systems are available in Inovance robot system.

Coordinate

system number
Coordinate system name Definition

1 Joint coordinate system
A coordinate system defined at each joint of the robot, which is a

direct description of the motion of the robot joints.

2 Base coordinate system
A coordinate system defined on the base of the robot, often used as

a reference for motion.

3 Tool coordinate system A coordinate system defined on the tool, which can be customized.

4 User coordinate system
A coordinate system defined on the workpiece, which can be

customized.

5
Fixed camera FOV

coordinate system

A coordinate system dedicated to the vision process.

It is established at reference point of the fixed mobile camera's field

of view, and is used to describe the position points in the camera's

field of view (X, Y, θ).

6
Mobile camera FOV

coordinate system

A coordinate system dedicated to the vision process.

It is established at reference point of the mobile camera's field of

view, and is used to describe the position points in the camera's

field of view (X, Y, θ).

7

Object coordinate

system on the conveyor

belt

A coordinate system dedicated to the tracking process.

Points (X, Y, Z, A, B, C) relative to the object coordinate system on

the conveyor belt are defined in this coordinate system.

7

1.4.1 Joint Coordinate System

The joint coordinate system is located at the joints of the robot.

J1+

J1-

J2+

J2-

J3+

J3-

J4+

J4-

J5+

J5-

J6+

J6-

J1+ J2

J3

J4

J1-

J1+

J3+

J4+

J2+

J4-

J2-

J1-

J3-

J1+

J2+

J3+

J4+

J1-

J2-

J4-

J3-

1.4.2 Base Coordinate System

The base coordinate system is also called the robot coordinate system and is generally located at

the base of the robot.

Base

frame

Z

X Y

Y

X

Z

Base

frame

Base

frame

Z

X

Y
The base coordinate system of inverted SCARA robot is located on the flange at the zero point

and does not move with the flange.

Base frame

Z

X

Y

The base coordinate system is a Cartesian coordinate system. (The tool and user coordinate

systems are also Cartesian coordinate systems.) The X and Z directions can be determined first,

and then the Y direction can be determined by the right-hand rule.

8

Y

X

Z

Right-hand rule

1.4.3 Tool Coordinate System

The tool coordinate system is attached to a tool. The tool center point (TCP) is a reference point

for a position where the robot reaches. The tool endpoint is generally taken as the TCP and the

direction can be freely defined.

TCP

Up to 16 tool coordinate systems can be defined in Inovance robot control system. Tool 0 indicates

that no tool is used, in which case, the tool coordinate system is located at the end of the

manipulator.

Y

X

Z

Tool frame 0

Y
X

Z

Tool frame 0

Z

X Y

Tool frame 0
Tool frame 0

Z

X

Y
Tools 1-15 can be user defined.

1.4.4 User Coordinate System

It is a user-defined coordinate system. The user coordinate system can be set arbitrarily and is

generally set on specific objects, such as a workbench or a conveyor.

9

Workbench

In Inovance robot control system, up to 16 user coordinate systems can be defined in one project.

User 0 indicates that the base coordinate system is also used as the user coordinate system. Users

1-15 can be user defined.

1.4.5 Other Coordinate Systems

Some specialized coordinate systems are used for some special processes.

Coordinate

System No.

Coordinate

System

Process

Application
Description Remarks

5 Fixed camera

FOV

coordinate

system

Specially used

for the field of

view function

Points (X, Y, θ) within

fixed camera field of

view are defined in this

coordinate system.

See also 1.5.4

Position Variables

for Special Processes

6 Mobile camera

FOV

coordinate

system

Specially used

for the field of

view function

Points (X, Y, θ) within

mobile camera field of

view are defined in this

coordinate system.

7 Object

coordinate

system on the

conveyor belt

Specially used

for the tracking

process

Points (X, Y, Z, A, B,

C) relative to the object

coordinate system on

the conveyor belt are

defined in this

coordinate system.

1.5 Position Variables

1.5.1 Overview

In Inovance robot control system, a point in the space is expressed using a "position variable" that

stores information about coordinate values, arm parameters, coordinate system, tool No. and user

No. Position variables are divided into global position variables and local position variables.

 The scope of the global location variable is a single project and the global location variable

can be used in all programs within a single project. It is denoted by P[***] and stored in the

project.

 The scope of the local position variable is a single program file and the local position variable

10

is used only in the current program file. It is denoted by LP[***] and stored in the program

file.

1.5.2 Storage Format of Position Variable

The position variables are stored in the following format:

①It records the coordinate data of the position variable, and the number of data is always 6 (the

value of extra axes is 0). The data are separated by "," and end with ";".

②It records the arm parameters of the position variable. The arm parameters are separated by ","

and ended with ";".

③It records the coordinate system number + tool number + user number of the position variable,

which are separated by "," and end with ";".

④It records the label of the position variable and ends with ";". The label should be less than

20 characters, start with letters and contain only letters, numbers and underscores. No entry when

no label is present.

⑤It records the remarks of the position variable and ends with ";". The remarks are required to

be less than 100 characters, with no restrictions on Chinese and English characters, and no equal

sign can be entered. (Chinese input is not supported on the handheld device, but display is

supported). No entry when no remarks are available.

The global position variables are stored in the project file P.pts and are common to all

programs within the project.

The local position variables are placed in the robot program and are at the beginning of the

file before the START instruction. See the illustration below.

1.5.3 Attributes of Position Variables

Coordinate system:

11

Coordinate system used to get points. The meanings of coordinate values are indicated by the

coordinate system.

Coordinate value:

The meanings of coordinate values are indicated by a coordinate system.

When the coordinate system is 1, coordinate values are joint values of the robot (J1, J2, J3, J4, J5,

J6). Joint values are rotation angles of an arm relative to the zero position.

When the coordinate system is 2, coordinate values are poses (X, Y, Z, A, B, C) of the robot flange

center point* relative to its base coordinate system.

When the coordinate system is 3, coordinate values are poses (X, Y, Z, A, B, C) of the TCP

relative to its base coordinate system.

When the coordinate system is 4, coordinate values are poses (X, Y, Z, A, B, C) of the TCP

relative to the user coordinate system.

*Flange center point: Center point on the flange end face of the last axis of the robot that represents the end

reference position of the manipulator.

Tool number:

Tool currently used.

Note: Always pick up the correct tool!

User number:

User coordinate system currently used.

Note: Used when the user coordinate system is used.

Example:

Variable name Coordinate value Coordinate system Tool User number

P[1] 0 0 0 0 -90 0 1 0 0

P[2] 0 0 0 0 -90 0 1 1 0

P[3] 100 0 100 0 0 0 2 0 0

P[4] 100 0 100 0 0 0 2 1 0

P[5] 110 0 60 0 0 0 3 1 0

P[6] 50 0 60 0 0 0 4 1 1

J1+

J1-

J2+

J2-

J3+

J3-

J4+

J4-

J5+

J5-

J6+

J6-

J1+

J1-

J2+

J2-

J3+

J3-

J4+

J4-

J5+

J5-

J6+

J6-

P[1]: Without tools, points taken in joint

coordinate system P[2]: With tools, points taken in joint coordinate system

 Note that the TCP position is not directly

represented by a coordinate system, but is

associated with a tool

12

Z

X Y

Z

X Y

P[3]: Without tools, points taken in base

coordinate system P[4]: With tools, points taken in base coordinate system

 Note that the TCP position is not directly represented

by the coordinate values, but is associated with a tool.

Z

X Y

Z

X Y

P[5]: With tools, points taken in tool

coordinate system P[6]: With tools, points taken in user coordinate system

Arm parameters:

The robot can reach the same pose in many ways. Arm parameters are used to distinguish these

ways.

For a 6-axis serial robot:

Arm parameter 1 represents multiple turns of J1;

Arm parameter 2 represents multiple turns of J4;

Arm parameter 3 represents multiple turns of J6;

Arm parameter 4 represents a combination of different configurations of the waist joint, elbow

joint, and wrist joint

Arm parameters 1 and 2

-1 0 1

Jx (-360° to -180°) Jx (-180° to180°) Jx (180° to 360°)

13

-360°

-180° +180°

+360°

Arm parameter 3 (value of joint coordinate J6)

(-900 to -540) (-540 to -180) (-180 to 180) (180,540) (540,900)

-2 -1 0 1 2

Arm parameter 4

Value

of arm

paramet

er 4

0 1 2 3 4 5 6 7

Waist

arm

type

Forwa

rd

Forward Forward Forward Backwa

rd

Backwar

d

Backwar

d

Backwar

d

Elbow

arm

type

Upwar

d

Upward Downwa

rd

Downwa

rd

Upward Upward Downwa

rd

Downwa

rd

Wrist

arm

type

Upwar

d

Downwa

rd

Upward Downwa

rd

Upward Downwa

rd

Upward Downwa

rd

Waist

forward

Waist backward Elbow upward Elbow

downward

Wrist not

flipped

Wrist flipped

For SCARA robots, the values of the arm parameters 1, 4 are valid.

Arm parameter 1 Arm parameter 4 (value of joint coordinate J4)

-1 1 (-900,-540) (-540 to

-180)

(-180 to

180)

(180,540) (540,900)

Left arm Right arm -2 -1 0 1 2

14

When multiple turns are involved, the arm parameter is

increased by 1 for every 360° and decreased by 1 for every

360°.

For inverted SCARA robots, arm parameters 1, 2, 3, 4 are valid.

Arm parameter 1

-1 1

Left arm

orientation

Right arm

orientation

Arm parameter 2 (value of joint coordinate J1)

 (-540 to -180) (-180 to 180) (180,540)

-1 0 1

When multiple turns are involved, the arm parameter is increased by 1 for every 360° and

decreased by 1 for every 360°.

Arm parameter 3 (value of joint coordinate J2)

 (-540 to -180) (-180 to 180) (180,540)

-1 0 1

When multiple turns are involved, the arm parameter is increased by 1 for every 360° and

decreased by 1 for every 360°.

Arm parameter 4 (value of joint coordinate J4)

(-900 to -540) (-540 to -180) (-180 to 180) (180,540) (540,900)

-2 -1 0 1 2

When multiple turns are involved, the arm parameter is increased by 1 for every 360° and

decreased by 1 for every 360°.

For the Delta robot, arm parameter 4 is meaningful.

15

Delta arm parameter 4 (Joint coordinate J4 value)

(-540 to -180) (-180 to 180) (180,540)

-1 0 1

When multiple turns are involved, the arm parameter is increased by 1 for every 360° and decreased

by 1 for every 360°.

Note: If arm parameters are modified after teaching, the robot will reach the same pose in an

another arm type with a great change to motion status. Modify the arm parameters with caution!

1.5.4 Position Variables for Special Processes

For some special processes, more position variable types are defined as follows:

Position points within

fixed camera field of

view

The coordinate system number is 5, the coordinate value

of the point in the camera field of view is (X, Y, θ), and the

corresponding storage form is (X, Y, 0, A, 0, 0). The tool

number is the number of the tool used, and the user

number is the visual coordinate system number used.

Specially used

for the field of

view function

Position points within

mobile camera field

of view

The coordinate system number is 6, the coordinate value

of the point in the camera field of view is (X, Y, θ), and the

corresponding storage form is (X, Y, 0, A, 0, 0). The tool

number is the number of the tool used, and the user

number is the visual coordinate system number used.

Specially used

for the field of

view function

Used for the tracking

process

The coordinate system No. is 7. Coordinate values (X, Y,

Z, A, B, C) are used to define the synchronous motion of

an object on the conveyor belt and represent the

coordinate position of the object relative to the conveyor

belt.

Specially used

for the tracking

process

1.6 Offset

Offset is used to describe the motion in space, which can be the motion of joints J1-J6 described in

joint coordinate system, or the spatial change of a certain position and pose XYZABC relative to a

certain coordinate system in three-dimensional space.

In the Inovance robot system, the offset is divided into the following three types.

1.6.1 Joint Offset

Function: Moves the joints of robot.

Instruction: OffsetJ

16

J1+

J1-

J2+

J2-

J3+

J3-

J4+

J4-

J5+

J5-

J6+

J6-

1.6.2 Offset Along the Current Tool Pose

Function: Moves the robot along the current tool pose.

Instruction: OffsetT

TOOL

Y

X

Z

Y

X

Z

1.6.3 Offset in a Cartesian Frame

Function: Offsets a target point in a Cartesian reference system. A target point may be the TCP or

flange center point. A reference system may be a user or base coordinate system.

Instruction: Offset

Several offset modes

Flange

center

Base

frame

Z

X Y

TCP

Base

frame

Z

X Y

TCP

User frame
X

Y

Z

1.7 Interpolation and Transition

Interpolation is the basic form of motion of a robot, and complex motion is made up of a series of

interpolation motions. There are three types of interpolation, depending on the interpolation

17

trajectory.

Interpolation

Type

Track Characteristics

Joint

interpolation

(Movj)

Point-to-point interpolation, the fastest interpolation in

which each joint moves at the fastest speed. The motion

trajectory is unpredictable. It is often used for applications

such as spot welding and transportation.

Linear

interpolation

(Movl)

The motion trajectory is straight. It is often used for

applications such as track welding and surface mounting.

Arc

interpolation

(Movc)

The trajectory is arc-shaped.

Note: When executing Movl and Movc, the arm parameters of the robot are not allowed to change.

If you need to change the arm parameters, insert the Movj instruction to complete the arm posture

transition.

In the actual continuous motion process, in order to accelerate rhythm, accurate arrival is not

required. At this time, the middle point of the motion will show the form of trajectory

approximation, which is called transition.

In Inovance robot system, the transition can be divided into the following levels: Fine, Z[0], Z[1],

Z[2], Z[3], Z[4], Z[5] and Z[CP]. See the transition feature for details.

Interpolation precision

1.8 Singular Position

When moving in a non-joint coordinate system, the robot may move to certain special positions

where the robot loses some freedom of movement called singular positions.

In joint interpolation Movj, the singular position does not affect normal motion. In the process of

linear interpolation Movl and circular interpolation Movc, the singular position prevents the robot

from moving properly.

Note: When a singular position alarm is encountered, the singular position can be exited using the

joint motion mode.

There are three singular positions for the 6-axis robots, as shown in the figure below.

18

The SCARA robot has only one singular position, at J2=0°, when the 1st and 2nd arms are in a

straight line.

(SCARA robot's singular position at J2=0°)

The singular position of Delta robot is not in the working range, and there is no singular position.

1.9 Motion Range and Interference Area

The range of motion of a robot is a collection of all points that can be reached by the end of the

robot's arm. The range of motion of a robot is related to the length of its arm and the range of

motion of its joints.

19

Interference area: In the range of motion, there are often areas where the end actuator is prevented

from reaching. When in these areas, the robot will collide with its own components or external

devices. These areas are called interference areas.

The user can customize the interference area.

2 Getting Started

2.1 Operating Process

As an example, the following describes the process of using the robot, including power-on and

connection, user login, status check, and manipulation of the robot.

2.2 Power-On and Connection

Power up the controller and the teach pendant displays the connecting status as shown below.

20

When the connection is successful, the following screen is displayed.

 For the handheld teach pendant, by default it automatically connects to the controller

successfully after power-up of the controller.

 For the PC-based teach pendant, when connecting it to the controller for the first time, you

need to click the Skip button, go to Set > System > CommSet, enter the IP address of the

controller, and then click Connect.

When the teach software is launched, the connection is automatically performed based on the

last communication address. If the connection fails, take measures given in the following

table according to the screen display. For details, refer to the following table.

Screen Display Problem Solution

21

Communicating

with the

controller...

Network

connection

failed

Others

Software or

hardware

problems

Contact the manufacturer for help

Note: If the current project is empty, InoTeachPad will jump to the file list page after connecting

to the controller, but subsequent operations can still be carried out.

2.3 User Login

You can click in the upper right corner to perform login.

22

Select a mode according to the current user's role and log in.

Mode Audience Initial Default Password

User Operators on the production line. The

operators can directly control robot motion

and run programs, control the status of I/O

and force the I/O.

No password is required.

Editor Teaching programmer. Compared with the

user mode, the program editing function is

added so that users can perform teaching

programming. Permissions such as

equipment control and mechanical locking

are also added.

The initial password is

000000.

Manager Advanced users. Most of the system

operation permissions are included.

The initial password is

000000.

Factory Manufacturer maintenance personnel. The

manufacturer maintenance personnel have

the highest permissions and can perform

operations such as upgrading and joystick

calibration.

Reserved by the manufacturer

Different user modes correspond to different operation permissions:

Operation Permission

23

User Editor Manager Factory

Motion control √ √ √ √

Switch coordinate

system, tool number,

user number and grip

load number

√ √ √ √

Switch speed √ √ √ √

Switch jog mode √ √ √ √

Run the project √ √ √ √

Modify, edit the

project
× √ √ √

I/O control √ √ √ √

Robot settings × × × √

Work origin × √ √ √

Absolute zero × × √ √

Homing calibration

(SCARA robot only)
× × √ √

Load on arm × √ √ √

Setup form (6-axis

robot only)
× × × √

Teach/play parameters × × √ √

Axis limit × × √ √

Tracking error/arrival

error/current

limit/average load rate

limit

× × × √

Interference area

settings
× √ √ √

Collision detection

settings
× × √ √

Advanced features × × √ √

Bus switch × × √ √

I/O mapping × √ √ √

IRLink settings × × √ √

Communication

settings

Only for communication

of the teach pendant
× √ √

Time and date × × √ √

Mechanical lock × √ √ √

COM port switch × √ √ √

Emergency stop

trigger
× × √ √

Emergency stop mode × × √ √

Safety door × × √ √

24

Flying trigger I/O × × √ √

SN match × × × √

Screen calibration × × √ √

Screen rotation × × √ √

Brightness and

screensaver
× × √ √

Joystick calibration × × √ √

Configuration backup × × √ √

Configuration load × × √ √

Memory card backup × √ √ √

Memory card load × √ √ √

Point file load × √ √ √

System update × × × √

Factory reset × × × √

Memory card

formatting
× × × √

Clear historical alarm × × √ √

Clear PLC

configuration
× × × √

Network debugging √ √ √ √

Controller debugging × × √ √

Teach pendant

commissioning
× × × √

System diagnostics × × √ √

Servo check × × × √

Control device × √ √ √

Feature expansion × × √ √

2.4 Status Check

After connection is successful, check the status indicator in the upper right corner and the message

bar at the bottom. The robot is normal only when the status indicator indicates a standby or

enabled status. In case of anomalies, take necessary measures.

25

Status indicator:

Status

indicator
Description

Measures

Servo enabled: The

emergency stop is released

and the servo is enabled.

--

Emergency stop: The

emergency stop button is

pressed and the robot

cannot move.

--

Standby: The emergency

stop button is released and

servo is not enabled.

--

Alarm: An error occurs and

needs to be handled

immediately.

Read the prompt in the message bar, take measures

according to the "Robot Alarms and Handling

Method" in the Appendix, and then click the alarm

button to clear the alarm.

Warning: An abnormality

occurs and the system

prompts users.

Read the prompt in the message bar, take measures

according to the "Robot Alarms and Handling

Method" in the Appendix, and then click the alarm

button to clear the warning.

Offline: The network is

disconnected and

communication with the

Go to System > CommSet, enter the IP address of

controller and reconnect the teach pendant to the

controller.

26

controller fails.

2.5 Robot Manipulation

Select the coordinate system and speed (or jog mod), click and hold the ENABLE button, and

click the corresponding function buttons on the teach pendant to move the robot.

Step 1: Select the coordinate system

Click in the upper right corner and select the coordinate system in the pop-up page.

The coordinate system determines the direction of motion. The following coordinate systems are

available:

J1+

J1-

J2+

J2-

J3+

J3-

J4+

J4-

J5+

J5-

J6+

J6-

User

Motion along the joint coordinate system Motion along the base coordinate system Motion along the tool

coordinate system Motion along the user coordinate system

Step 2: Select the speed and mode of motion

You can set the speed and jog mode by clicking the speed button and jog mode button in the upper

right code.

The first button allows you to set the motion speed. There are four levels of speed, that is, 5%,

25%, 50% and 100%. You can also fine tune the speed through the speed adjustment button on the

teach pendant.

The second button allows you to set the mode of motion. You can select whether the robot jogs

and set the jog parameters.

In the jog mode, when you press the axis motion button, the robot will only move a specific step at

most, rather than continuously moving when you press the button.

Base

Tool

27

Non-jog mode, that is, the robot moves at normal speed.

G1 jog. Joint step 0.05°, position step 0.05mm, rotation step 0.05°

G2 jog. Joint step 0.5°, position step 0.5mm, rotation step 0.5°

G3 jog. Joint step 2°, position step 2mm, rotation step 2°

User-defined jog.

Go to Set > Motion > TeachPara > Jog and set the jog parameters.

Step 3: Enable and manipulate the robot

 For the handheld teach pendant, press and hold the ENABLE button.

 For the PC-based teach pendant, just click the ENABLE button and the enabled state will be

kept.

Click in the lower right corner and the teaching panel pops up.

The left teaching panel is for the joint coordinate system, and the right teaching panel is for the

base/tool/user coordinate system.

You can click the arrow buttons to move the robot accordingly.

Also, you can use physical buttons on the IRTP80 teach pendant.

28

3 Programming and Running

3.1 Basic Features on Main Interface

The main interface provides the following basic features.

① Panel switching bar

You can switch among edit panel, monitoring panel, and settings panel.

② Control toolbar

The control toolbar includes the following buttons.

Robot control

switch button

Control by InoTeachPad

Control by other devices (detailed in 7.2.1 Robot Control)

User login

button

User

Editor

29

Manager

Factory

Coordinate

system/tool/use

r/gripload

switch button

Sets the coordinate system, tool number, and user number. Click

this button to pop up the setting page.

Icons:

, , , indicate the joint coordinate

system, base coordinate system, tool coordinate system and user

coordinate system, respectively.

T: Represents the tool selected

U: Represents the user coordinate system selected

The following shows the popup:

Speed

multiplying

ratio

Running at 5% of a set speed

Running at 25% of a set speed

Running at 50% of a set speed

Running at 75% of a set speed

Running at 100% of a set speed

Motion mode

selection button

Non-jog motion, that is, the robot moves at normal speed. When

the motion button is pressed and hold, the robot moves

continuously.

30

Jog motion.

Joint step: 0.05°

Position step: 0.05 mm

Rotation step: 0.05°

Jog motion.

Joint step: 0.5°

Position step: 0.5 mm

Rotation step: 0.5°

Jog motion.

Joint step: 2°

Position step: 2 mm

Rotation step: 2°

User defined jog motion.

Go to Set > Motion > TeachPara > Jog and set the jog

parameters.

Mechanical

lock button

Normal movement, non-mechanical locking

Mechanically locked. Robots do not actually move.

③ Status Indicator

The status indicator indicates the current status of the robot, including servo enabled, standby,

emergency stop, error, warning and offline.

Servo enabled: The emergency stop button is released and servo is

enabled. Motion can be performed only in enabled state.

Emergency stop: The emergency stop button is pressed and the robot

cannot move.

Standby: The emergency stop button is released and servo is not

enabled.

Error: An abnormality occurs and needs to be handled immediately.

Warning state: An abnormality occurs and the system prompts users.

Offline: The teach pendant is disconnected from the controller.

④ Control buttons on the right

31

The following figures show the control buttons on the right side of the PC-based teach pendant.

(Similar buttons are also provided on the handheld teach pendant. For details, see IRTP80

manual.)

Button Name Description

Left blue button: Enable

Middle keyhole: Mode switch

Right red button: Emergency stop

Enable: Enables the motor.

Mode switch: Switches between teach and

play modes.

Emergency stop: Stops the robot in

emergency.

Speed +

Increases the speed increase. When clicked,

the speed value increase by 1%.

When clicked and hold, the speed continues

to increase.

Speed -

Decreases the speed. When clicked, the

speed value decreases by 1%. When

clicked and hold, the speed continues to

decrease.

Axis switch

Only for teach pendant with joystick. You

can use the joystick to switch between the

axis group 1/2/3 (X/Y/Z) and the axis

group 4/5/6 (Rx/Ry/ Rz) axis group.

External axis switch Reserved

Coordinate system selection

Switches between coordinate systems

including joint coordinate system, base

coordinate system, tool coordinate system,

and user coordinate system.

Handheld teach pendant: Teach/Play

switch

PC-based teach pendant: Jog

Handheld teach pendant: Switches

between teach and play modes.

PC-based teach pendant: Sets the jog

motion parameters.

Start

In play mode, click this button to start

running the program.

In teach mode, when you click and hold

this button, the robot runs continuously;

when you release the button, the robot

pauses.

Stop
When the robot is running, click this

button to stop the robot.

Forward
In teach mode, click this button to execute

one line of the program.

32

Back

In teach mode, click this button to go

back to the previous line. This button is

reserved.

⑤ Teaching panel

You can click the buttons on the teaching panel to control motion of the robot.

The teaching panel in the left figure is displayed when you select the joint coordinate system, and

the teaching panel in the right figure is displayed when you select the base coordinate system, the

tool coordinate system, or the user coordinate system.

⑥ Task manager

You can activate/deactivate the main task and multitask, but cannot activate/deactivate the xqt task.

Check the box to take effect immediately.

The entry program, task type, and task status are displayed.

33

Task status: Inactive, Running, Stopped, Finished.

Inactive: An entry program is available, but the task is set to inactive.

Running: Single step or continuous operation in teach mode, or continuous operation in play mode

Stopped: The task is stopped.

Finished: The task is finished.

To activate or deactivate a task, the robot must be under the control or InoTeachPad and in a

non-teach mode.

Note: If you modify a program for a static task, the new program will not take effect when you

directly reactivate it; you must click Save again on the project configuration page.

⑦ Motion control bar

The motion control bar is used to control program execution and includes start, stop, forward and

back buttons. These buttons work differently in programming mode, teach mode, and play mode.

Button
Functio

n

Programmin

g
Teach Play

Back Disabled Disabled Disabled

Start Disabled

Click and

hold this

button to

move the

robot, and

release it to

stop the

robot.

Click this button

to start.

Stop Disabled Stop Stop

Forward Disabled

Click and

hold this

button to

execute one

step of the

program,

and release

it to stop the

execution.

Disabled

⑧ Message window

34

The message window displays prompt and error messages.

Prompt message: Prompts the user for information about certain actions. For example, when you

perform SD card formatting operation in user mode (SD card formatting requires manager

permissions higher than user permissions), a prompt message displays in the message bars.

Alarm message: Displays the alarm number and alarm description. For handling of the alarms, see

Appendix: Robot Alarms and Solution.

3.2 Project Manager

The figure shows the project manager.

The following features are supported.

(1) Managing the project

Opens the project list window.

35

In pop-up window, you can perform the following operations.

Refreshes the project directory and obtains the latest project directory from the controller.

Creates a new project.

Renames a project.

Copies a project.

Pastes a project.

Deletes a project.

Imports a project from local to the controller. You can choose a file with the extension prj

for import, and the entire folder where the current prj file is located as a project to the controller.

36

Exports a project from the controller to local

Note:

The maximum project name length is 16 characters, beginning with a letter and consisting of

letters, numbers, and underscores.

The current active project cannot be renamed or deleted.

Note: Users are not allowed to directly operate program files or other configuration files of the

project using FTP.

(2) Viewing/operating the project files

Click the project item on the left side and the corresponding files are displayed on the right side.

37

Use the buttons in the upper right corner to perform operations.

 Add Rename Copy Paste Delete Import Export

The program files support operations including creation, rename, copy, delete, import and export.

The point files and resource files support operations including import and export.

Precautions:

The program name has a length of up to 26 characters, beginning with a letter and consisting of

letters, numbers, and underscores.

One project contains up to 16 program files.

The names of the label files and resource files in each project are fixed, and will be checked

during file import.

For program files, those with too old version and those with illegal file names cannot be imported.

(3) Project configuration

38

The entry program for MainTask is main.pro.

You can configure the entry program for Task_1 and Task_2 and set the task properties to static or

dynamic.

The configuration takes effect after you click Save. The Entry drop-down list only shows the

program name.

When you click Save, the static task will be reset and start running.

If you want to view the previously configured entry program after selecting a new entry program,

click Refresh.

(3) Open the file

Double-click a file in the file list to open it.

39

(4) Project configuration

Click Config to configure the entry program of the task and the task type.

40

If you want to view the previous configuration after modifying the configuration, click Refresh

before clicking Save.

(5) Refreshing the project

You can refresh the current project using the Refresh button in the upper left corner.

When the robot is controlled by a device other than InoTeachPad, a Refresh button is also

available in the upper right corner for you to refresh the project.

41

3.3 Editing the Project

(a) Saving/refreshing/returning to the project

On the editing page, Save, Save All, and Back buttons are provided in the upper right corner.

Save: Saves the current page

Save All: Saves all open pages

Back: Returns to the project file list page

Note: When you click Back, if the modified project is not saved, you will be prompted to save the

modification.

When the robot is controlled by a device other than InoTeachPad, only Refresh and Back buttons

are available in the upper right corner.

Refresh: Reloads the current project from the controller

(b) Editing the program

42

No. Area Function

1 Program selection area

The program drop-down list contains all the files in the project.

Click Command to view the current program instructions.

Click LP[***] to view the points corresponding to the current

program.

2 Tool area Edits the programs, points, etc.

3
Auxiliary operating

area

Provides auxiliary functions such as page turning, quick

positioning, etc.

(1) Selecting the program

The drop-down list contains all the program files in the current project. Select a program file from

the drop-down list.

(2) Editing the program

The functions shown above, from left to right, are:

Multi-select: Turns on or off the multi-select function, allowing the operation to take effect on

multiple lines of instructions. You can select multiple non-consecutive lines.

New: When clicked, the following page pops up. Select the instruction.

43

Copy: Copies the instruction

Paste: Pastes the instruction

Delete: Deletes the instruction

Comment: Comments or uncomments the selected instruction

Keyboard: Turns on or off the keyboard editing mode. When turned on, when you double-click on

an instruction line or add a new instruction, a full keyboard pops up.

When the robot is controlled by a device other than InoTeachPad, there is only one button here.

: Refreshes the project.

(3) Auxiliary operation

The auxiliary operation buttons include:

44

Zoom In/Out: Zooms in and out on the current program.

Locate: Jumps to the specified line of program after you enter the program line number in the

pop-up numeric keypad.

Page Up/Page Down: Goes to the previous or next page of the program

Previous line/Next line: Goes to the previous or next line of the instruction

Find: Searches or replaces by keyword.

 Find next: Finds the next object from the current line.

 Replace: Replaces an object from the current line.

 Replace all: Replaces all objects from the current line.

45

(4) Editing the instruction

Double-click the instruction line and you can edit the instruction in the pop-up keyboard.

(c) Editing the points

The LP[***] page in the Program displays the local points, which are defined for the program

file.

The P[***] page displays the global points, which are common to all programs in the project.

The local points LP can be edited in the same way as the global points P.

46

(1) Editing the points

As shown above, the functions from left to right are:

Replace: Replaces the selected point with the current point.

New: Adds a new LP, and the new point gets the current value.

Delete: Deletes the selected point.

Rename: Renames the selected point (in the pop-up keyboard, enter the point number).

Copy: Copies the selected point.

Paste: Pastes the copied point.

To edit a point: Double-click an item in the point list and then edit the point in the pop-up edit

page.

47

(2) Display of the points (page turning, locate, toggle display)

The vertical toolbar on the right shows the page turning, locate, and toggle display buttons.

: Locates a point by clicking this button and entering the point number in the pop-up

keyboard.

: Toggles the display between the coordinate value and the label of the point.

(3) Moving to a point

You can move to a point in two ways:

 Select a point in the list, turn on enable mode, click and hold . This is a Movj

movement.

 Select a point in the list, turn on enable mode, click and in the pop-up page click and

hold Execute. This approach supports various ways to reach the point.

48

Note: Regardless of the way of reaching the point, the motion stops immediately while you release

the button.

(d) Editing the label

The Label tab includes [IN], [OUT], [AD], [DA], [B], [R] and [D] pages. On the corresponding

page, double-click the Label column or Remark column to edit the label or remarks.

Label: Up to 20 characters, starting with a letter and containing only letters, numbers, and

underscores.

Note:

Labels cannot be duplicated, with the exception that duplicate LP labels are allowed in multiple

program files.

Label cannot be the same as keyword, program name.

Remark: Up to 100 characters, Chinese or English, equal sign not allowed. If the remark contains

Chinese characters, you can enter a maximum of 50 Chinese characters.

Other information:

For IN and OUT variables, they include standard I/O, fieldbus I/O, and memory I/O, see Section

5.3.1. By data type, they include Bit-, Byte- and Word-type I/Os, see section 5.3.2.

(E) Editing the tool

The Tool tab includes Coordinate and Load pages.

49

On the Coordinate page, select the tool you want to edit from the drop-down list. You can edit the

coordinates directly.

Note: Tool0 cannot be edited.

Calibrate: Calibrates the corresponding tool.

Clear: Clears the coordinate system values, while clearing the intermediate data.

Click Calibrate to go to the calibration page.

The calibration page displays the last calibration data, including calibration results, calibration

method, calibration center point.

Description of the calibration interface:

Blue area: Displays the current coordinate system values.

Drop-down list: Selects calibration method. The possible calibration methods include direct

50

method, 3-point TCP, 5-point TCP, 3-point TCP+ZX, and 5-point TCP+ZX. Different calibration

methods present different pages (Note: Unsaved calibration intermediate data will be cleared each

time a calibration method is selected).

GetPos: Gets the current TCP position in the base coordinate system. Each time a point is gotten

successfully, a value is displayed and a check mark in front of the point button indicates that the

point is complete.

GetResult: Generates a calculation based on the value of the points, which is displayed in the blue

area above the page.

Apply: Applies the calibrated results and intermediate data. Note: The application results are not

saved to the project and need to be saved separately.

Refresh: If you are not satisfied with the results generated, you can click the Refresh button to

refresh the last saved calibration data as long as it is not saved.

Motion to: In the pop-up dialog, select the mode of motion, and move to the destination point by

enabling the servo, clicking and hold the start button. To stop the motion, release the start button.

Description of calibration method:

Method Characteristics Applicable Scenario

Direct Directly enter coordinate system

parameters.

Coordinate system parameters are

known.

3-point TCP Obtains position of the tool through

three points.

Position values of the tool coordinate

system need to be manually calibrated.

5-point TCP Obtains position of the tool through

five points.

Position values of the tool coordinate

system need to be manually calibrated.

It is more accurate than 3-point TCP

because more points are used.

3-point

TCP+ZX

Obtains position of the tool through

three points and pose of the tool

through three additional points.

Position and orientation values of the

tool coordinate system need to be

manually calibrated.

5-point

TCP+ZX

Obtains position of the tool through

five points and orientation of the

tool through three additional points.

Position and orientation values of the

tool coordinate system need to be

manually calibrated. It is more

accurate than 3-point TCP+ZX

because more points are used.

Direct entry:

Enter the values of the tool coordinate system directly, click Apply, and then click the Save or

Save All button.

3-point TCP

After installing a tool at the end of the robot, adjust the pose of the tool to align the TCP with one

point in the space in three different directions. Then click the GetPos button to record the point

values. After the alignment of three points have been finished, click GetResult to obtain tool

coordinate system parameters.

51

3-point TCP

Operation steps:

Step 1: Control the motion of robot so that the TCP is aligned with the reference point in Direction

1, and then click GetPos1.

Step 2: Control the motion of robot so that the TCP is aligned with the reference point in Direction

2, and then click GetPos2.

Step 3: Control the motion of robot so that the TCP is aligned with the reference point in Direction

3, and then click GetPos3.

Step 4: Click GetResult, and tool coordinate system parameters are automatically generated.

Step 5: Click Apply, and then click the Save or Save All button.

Note:

The interval between the three different poses selected for the three-point TCP method and the

five-point TCP method should be as large as possible. An interval of over 20 degrees is

recommended.

After you click GetResult, error parameters are displayed. It is generally deemed to be accurate

that the maximum error is smaller than the absolute precision of the robot body+0.1mm. When the

maximum error is too large, it is recommended to get points to generate tool coordinate system

parameters again.

When the tool end of the SCARA and Delta robots is coaxial with the end axis (i.e. there is only a

Z value), this Z position parameter cannot be obtained via the 3-point or 5-point TCP method.

5-point TCP

Align the TCP with a reference point in the space in five different directions, similar to the

three-point TCP method.

52

 5-point TCP

3-point TCP+ZX

Get three more points to calibrate poses of the tool coordinate system on the basis of 3-point TCP

method. The Z extended point and the reference point compose the Z direction of the tool

coordinate system. The X and Z extended points compose the X direction of the tool coordinate

system. The Y direction can be obtained from the Z and X directions by the right-hand rule. See

the following figure.

Take Z-direction
extension

Take X-direction
extension

Take datum
point

Tool coordinate
system

Take Z-direction
extension

The operations are as follows:

Step 1: Control the motion of robot so that the TCP is aligned with the reference point in Direction

1, and then click GetPos1.

Step 2: Control the motion of robot so that the TCP is aligned with the reference point in Direction

2, and then click GetPos2.

Step 3: Control the motion of robot so that the TCP is aligned with the reference point in Direction

3, and then click GetPos3.

Step 4: Control robot motion. Select the TCP at any moment as the reference point. Click

BasePos.

Step 5: Control the motion of robot so that the tool extends a distance in Z direction, and then

click ZPos.

Step 6: Control the motion of robot so that the tool extends a distance in X direction, and then

click XPos.

Step 7: Click GetResult, and tool coordinate system parameters are automatically generated.

53

Step 8: Click Apply, and then click the Save or Save All button.

5-point TCP+ZX

Align the TCP with a reference point in the space in five different directions, similar to the

three-point TCP+ZX method.

On the Load page, modify the parameters.

Note:

Tool0 cannot be edited.

For SCARA robots, parameters A, B, C, IX and IY cannot be edited. For 6-axis robots, all

parameters can be edited.

Make sure all the load parameters are correctly set; otherwise, collision detection false alarms, too

long or short cycle time, or abnormal current may occur.

54

(f) Introduction to the user coordinate system page

On the Crd User page, select the user coordinate system from the drop-down list so that you can

view the coordinate parameters. You can edit the coordinates directly.

Note: User0 cannot be edited.

Click Calibrate to go to the calibration page.

The calibration page displays the last calibration data, including calibration results, calibration

method, calibration center point.

Description of the calibration interface:

Blue area: Displays the current coordinate system values.

Drop-down list: Selects calibration method. The calibration methods include direct method,

3-point TCP, and rotation method. Different calibration methods present different pages (Note:

55

Unsaved calibration intermediate data will be cleared each time a calibration method is selected).

GetPos: Get the current TCP position in the base coordinate system. Each time a point is gotten

successfully, a value is displayed and a check mark in front of the point button indicates that the

point is complete.

GetResult: Generates a calculation based on the value of the points, which is displayed in the blue

area above the page.

Apply: Applies the calibrated results and intermediate data. Note: The application results are not

saved to the project and need to be saved separately.

Refresh: If you are not satisfied with the results generated, you can click the Refresh button to

refresh the last saved calibration data as long as it is not saved.

Motion to: In the pop-up dialog, select the mode of motion, and move to the destination point by

enabling the servo, clicking and hold the start button. To stop the motion, release the start button.

Description of calibration method:

Method Characteristics Applicable Scenario

Direct Directly enter coordinate system

parameters.

Coordinate system parameters are

known.

3-point TCP Calibrates the user coordinate system

using three points.

Values of the user coordinate system

need to be manually calibrated.

Rotate Make marks on the turnplate. Rotate

the turnplate and get points for

teaching.

A turnplate is provided and the user

coordinate system is located at the

center of the turnplate.

Direct method:

Enter the values of the tool coordinate system directly, click Apply, and then click the Save or

Save All button.

3-point TCP:

Step 1: Get the origin of the user coordinate system and click GetPos1.

Step 2: Take a point in the positive direction of the X-axis of the user coordinate system and click

GetPos2.

Step 3: Take a point in the Y+ direction on the XY plane of the user coordinate system and click

GetPos3.

Step 4: Click GetResult, and tool coordinate system parameters are automatically generated.

56

Step 5: Click Apply, and then click the Save or Save All button.

Note:

1.The XY point is not directly on the Y-axis, but in the Y+ direction of the XY plane. Thus, the

XY point indirectly defines the Y-axis, and the final Z-axis is obtained by the right-hand rule.

2. For SCARA and Delta robots, if Z direction of the user coordinate system has a negative

component in the Z direction of the base coordinate system, the system will automatically reverse

Z and Y directions of the user coordinate system, with the X direction remaining unchanged.

Rotate:

Rotation direction

Step 1: Mark a fixed point on the turnplate, align the TCP with the marked point and then click

GetPos1.

Step 2: Rotate the turnplate by an angle, align the TCP with the marked point again and then click

GetPos2.

Step 3: Rotate the turnplate by an angle, align the TCP with the marked point again and then click

GetPos3.

Step 4: Click GetResult, and user coordinate system parameters are automatically generated.

Step 5: Click Apply, and then click the Save or Save All button.

57

(g) Editing the grip load

On the Grip Load page, select the grip load from the drop-down list. You can edit the parameters

directly.

Note: GripLoad0 cannot be edited.

For SCARA robots, parameters A, B, C, IX and IY cannot be edited. For 6-axis robots, all

parameters can be edited.

Make sure all the load parameters are correctly set; otherwise, collision detection false alarms, too

long or short cycle time, or abnormal current may occur.

(H) Editing the user alarms

On the User Alarm page, double-click an item to modify the alarm message.

58

Note that the message bar displays the detailed alarm messages in the current project, while in the

logs the contents of the messages will not be displayed.

3.4 Debugging

You can slide the Edit button to Debug to switch from the programming interface to the

debugging interface.

 indicates debug mode.

Note: When switching to the debug mode, if you are prompted to save the project, you need to

click the Save All button before switching to the play mode.

59

In debug mode, you will be able to run the project. The status of the tasks on the page is refreshed

in real time as the tasks run. The execution of the program under the currently viewed task is

refreshed in real time. The program file name in the drop-down list, the program displayed on the

page, and the program line number are refreshed automatically.

Task tab: By toggling the task tab, the programs under the different tasks are displayed on the

right.

Task_0: Main task

Task_1: Multi-tasking, either dynamic or static

Task_2: Multi-tasking, either dynamic or static

Task_3: Multi-tasking, xqt task (The status and status line of the xqt task cannot be set.)

The motion status is indicated on the task tab:

: Stopped

: Running

: Inactive (including idle)

: Finished

60

Program lines:

Running line: The line of instructions being executed, representing the current position of the

robot.

Start/Compiling line: A pre-compiling line of instructions, which is always ahead of the running

line. You can set the start line of the program.

Cursor line: The line in which the cursor is located.

Setting the start line:

: Sets the current cursor line as the start line.

: The current task returns to the start line, that is, the start line of the current task is reset

to the start line of the entry program.

: All tasks return to the start line, that is, the start line of all tasks is reset to the start line

of the entry program.

Note: In debug mode, you can navigate through the program using the Page Up/Down, Zoom

In/out, and Locate buttons to help set the start line of the task.

Viewing instructions and points: Select the Command tab to view the program; select [LP***]

to view the position points (You can view the values defined in the currently selected program file,

not the real-time memory value!)

Start in debug mode: Enable the servo, click and hold the start button. Release the start button to

stop immediately.

Variable monitoring in debug mode:

In the debug mode, you can access the quick monitor panel by clicking the Monitor button.

61

In the monitor panel, you can monitor the corresponding values of variables in the current start

line of the current task.

Pick: When checked, click on a line of the program to monitor variables in that line.

Note:

You can only monitor the line you currently select, and cannot monitor the line previously

selected.

For the custom struct variables, you cannot pick them for monitoring.

You can expand or collapse the monitor panel. On the expanded panel, you can add or remove the

monitor object.

 Monitoring of fixed objects: If you want to monitor fixed objects including

B/R/D/LB/LR/LD/P/LP/PR/LPR/IN/OUT/Tool/User variables, select Fixed Object. Then

select the variable type and enter the variable number. For example, if you set Type to "B"

62

and enter "1” to No., then the monitored object is "B[1]".

 Monitoring of custom objects: If you want to monitor custom objects, such as

Bool/Int/Byte/float/double data type, select Custom base type. Then enter the object name

directly in the Name field.

Click Add to add the object to monitoring task. At most 10 variables can be added (Note that a

composite variable such as a P variable consisting of multiple sub-variables such as P[1].Data[0]

is considered as one variable.) When you have multiple pages of data, you can navigate through

the pages via LastPage and NextPage buttons.

Note:

Scope of monitored variables:

B, R, d, P, PR, Str, custom global variables

LB, LR, LD, LP, LPR, custom local string variable

System variables such as Tool, User, IN, OUT, IG, InB, InW, OutB, OutW

As an example, the following describes how to monitor the I/O variables.

In the debug mode, click Monitor, select Custom base type, enter the variable name, click Add

and then the variable is automatically displayed in the list of monitored objects. The supported

variable formats include

In[X], InB[X], InB[X].Int, InB[X].Float, InB[X].Double, InW[X], InW[X].Int, InW[X].Float,

InW[X].Double, as shown in the following figure.

Custom structs cannot be picked for monitoring. You can only monitor member variables in the

custom struct through the Custom base type option.

2. Only when the program is not running can you select a program line to set the monitor objects.

63

3. Automatic clearing of monitoring data:

When you switch to the play mode or switch the task or program, the monitor panel closes and the

monitoring data are cleared.

Modifying the value of the monitored variables:

To modify the value of a global variable or a local variable in the monitor list, double click the

variable. Note that both global and local variables can be modified, but system variables cannot be

modified.

3.5 Play Mode

When you switch to the play mode, the system is automatically enabled.

Note:

When switching to the play mode, if you are prompted to save the project, you need to click the

Save All button before switching to the play mode.

For different types of teach pendant, the mode switch button is located in different positions.

For IRTP80 teach pendant, you can switch the mode using .

For the PC-based teach pendant, you can switch the mode using .

The following figure shows the Play interface.

The Play interface is basically the same as the Debug interface.

Task tab: By toggling the task tab, the programs under the different tasks are displayed on the

64

right.

Task_0: Main task

Task_1: Multi-tasking, either dynamic or static

Task_2: Multi-tasking, either dynamic or static

Task_3: Multi-tasking, xqt task (The status and status line of the xqt task cannot be set)

The task status is indicated on the task tab:

: Stopped

: Running

: Inactive (not activated, or idle)

: Finished

Program lines:

Running line: The line of instructions being executed, representing the current position of the

robot.

Start/Compiling line: A pre-compiling line of instructions, which is always ahead of the running

line. You can set the start line of the program.

Cursor line: The line in which the cursor is located.

Setting the start line:

: All tasks return to the start line, that is, the start line of all tasks is reset to the start line

of the entry program.

Note: In the play mode, you are only allowed to return all tasks to the start line.

65

Viewing instructions and points: Select the Command tab to view the program; select [LP***]

to view the points (You can view the values defined in the currently selected program file, not the

real-time memory value!)

Start in play mode: Click the start button and the program keeps running until the stop button is

clicked.

In play mode, the run time and safety door status are also displayed.

Run time: Time from start to stop of the main task.

Safety door: When the safety door is activated, if the safety door is open, a red light indicates that

the safety door has been opened.

3.6 Viewing Project Under Other Controls

When the robot is controlled by a device other than InoTeachPad, you can only view the project,

but cannot edit the project.

You can observe the execution of the program on the InoTeachPad. However, if the project has

been modified by other control devices, the modification will not be automatically refreshed and

you must manually refresh it using the refresh button.

Note:

The values on the programming interface are values defined in the project file, not the current

memory values. The current memory values need to be viewed on the monitoring interface. When

you want to see the results of the instructions "LP=XX" "P=XX", you need to go to the monitoring

interface. However, if the P and LP values are modified via Modbus or API, the values defined in

the project file and the current memory values will be modified synchronously. Therefore, you can

view the values in either the programming or the monitoring interface.

3.7 Example: Programming and Running a Project

Task: Create a new project "Test", edit the motion P[0]-P[1]-P[2] in the default program

"main.pro". After editing the program, test it and switch to the play mode to run the project.

x y

z

P[0]

P[1]

P[2]

66

The detailed operations are as follows:

1. Create a new project "Test" in the project manager.

2. Double-click the project "Test" to activate it. The project includes program "main.pro" by

default.

67

3. Double-click the program "main.pro" to access the editing interface.

4. Open the teach panel, select an appropriate coordinate system, and move to point P[0].

5. Create a new instruction, select Movj from the motion instructions, and click Add pnt on the

pop-up page.

68

6. Click OK. The added instruction is displayed in the program.

69

7. Repeat the above steps to teach points P[1], P[2] and add two Movl instructions.

8. When you have finished editing, click the Save All button. Switch from edit mode to debug

mode, enable the servo, click and hold the start button until the program is finished.

70

9. Switch to the play mode, return all tasks to the start line, and then click the start button.

71

3.8 Shortcut Keys

For the PC-based teach pendant, shortcut keys are supported in the programming interface.

Shortcut

Combination

Description

Ctrl + A Select all items, and bring up the multi-select box at the same time.

Or unselect all items if all items have already been selected.

Ctrl + Q Bring up the multi-select box.

Ctrl + C Copy

Ctrl + V Paste

Ctrl + D Comment line

Ctrl + F Find

Ctrl + G Go to a specific line

Ctrl + S Save

Command

search

Open the instruction list. Enter the string for search. Press Backspace or Del to

delete the string, or ESC to cancel search and return to the list of commonly

used instructions.

4 Settings

Before teaching the robot, you need to make a series of settings, including robot settings, zero

72

point settings, coordinate system settings, motion parameter settings, peripheral settings, system

settings, extension settings, etc.

After setting the parameters on a certain page, remember to click the Save button in the upper

right corner to save the settings.

4.1 Robot Settings

The robot settings include structural parameters, reduction ratio, coupling parameters, etc., and

need to be configured in factory mode.

Note: Robot settings are of great significance. Please contact the manufacturer if you need to

change them.

4.2 Zero Point Settings

The zero point settings include absolute zero point, working origin and zero point calibration (zero

point calibration is only available to the SCARA robots).

4.2.1 Absolute Zero Point

The following figure shows the interface for setting the absolute zero point. To set the absolute

zero point, do as follows:

Step 1: Adjust the robot’s joints to zero position using the teach pendant. Click the Get Cur button,

and the encoder values are automatically displayed in the text fields.

Step 2: Click the EmStop button, then click the Save button, and restart the controller.

73

Note: The encoder values supported by the teach pendant for J1 to J6 range from -231 to 231. If the

encoder values are too large, it is recommended to clear the number of encoder turns and repeat

the above steps. For the operation of clearing the number of encoder turns, see the related servo

and encoder manuals.

4.2.2 Work Origin

Different from the zero point, the work origin is a user-defined position variable that can be used

in the program. You can set up to five work origins and save them into variables Home[0] to

Home[4]. You can manually enter the coordinates of the work origin. Alternatively, you can click

and hold the Move to Point button to move the robot to the origin, then click the Get Cur button

to get the coordinates, and then click the Save button, as shown in the following figure.

74

4.2.3 Zeroing

This feature is only available to SCARA robots.

During use, SCARA robots occasionally lose their zero point due to impacts on hard objects,

unreasonable parameter settings, and other reasons, which affects their absolute accuracy. In

addition, this may also result in the already taught points being unusable. In order to effectively

solve the problem of zero point loss and improve the usability of SCARA robots, the zeroing

feature has been introduced.

Note: All axes are reset to zero using automated collision stops. The stops for J1 and J2 axes are

hard stops, and additional tooling is required for J3 and J4 axes. Additionally, due to the robot

structure, the zeroing of J3 and J4 axes must be carried out simultaneously.

4.2.3.1 Preparation before Zeroing

(1) Reference position: All axes are zeroed depending on the reference positions. The reference

positions for J1 and J2 axes are the positive and negative hard stops, and the reference position for

J3 and J4 axes is the limit ring. Before zeroing, ensure that the positive and negative hard stops of

J1 and J2 axes, as well as the limit ring of J3 axis are unchanged as they left the factory.

(2) If you want to zero the J3 and J4 axes, please install the zeroing tooling first*. (See below for

details)

(3) Remove the fixture to avoid entanglement of the air tubes, preventing mistaken belief that the

robot has reached the hard limit position.

(4) Clear items between the current position and the positive limit stop to eliminate interference.

Installation of the zeroing tooling for J3 and J4 axes:

Two types of tooling are required: positioning block and positioning column, as shown in the

following figure:

Positioning

block positioning

column

Release the brake of the J3 axis, move the lead screw to an appropriate position (where the

positioning block can be easily snapped onto the lead screw), and snap the positioning block onto

the lead screw, as shown in the left figure below. Then slowly move the J3 axis in the positive

direction by hand until the positioning block hits the spline nut or spline nut housing, reaching the

zero point of the J3 axis, as shown in the right figure below.

75

Positioning

block

Positioning

block

Secure the positioning column to the forearm and the limit ring, as shown in the left figure below.

(Ensure that the two rods do not collide. The zeroing of J3 and J4 axes is the process of collision

of the two rods, as shown in the right figure below.)

Positioning

column

Positioning

column

4.2.3.2 Steps of Zeroing

(1) Log in to the teach pendant as Manager or Factory user.

(2) Go to the zeroing page.

Set > BasePos > RepairZero

(3) Select the axis number.

Select the axis number in the Calibration axis drop-down list.

Note: The movement direction of all axes during zeroing is positive.

76

(4) Enter the zeroing mode.

Turn on the Regulate zero mode switch.

Note:

(a) If you are prompted for missing parameters, reset the parameters under the guidance of

the manufacturer.

Under normal circumstances, the newly produced robots will not lose parameters and can

normally enter the zeroing mode. However, in the following two situations, it may fail to

enter the zeroing mode:

 The robot system is produced before the introduction of S03.21R;

 The robot system is produced after the introduction of S03.21R, but is recovered

and loses the zeroing configuration.

In these two situations, you will be prompted for missing parameters.

Missing parameters,
please reset the

parameters under the
guidance of the
manufacturer!

 The switch cannot be turned on for robot system produced before the introduction of

S03.21R. (The manufacturer only retains the parameters for the new robot system.)

 If the product system is produced after the introduction of S03.21R, please contact the

manufacturer and reset the parameters under the instructions. (Ask for the parameters from

the manufacturer, enter the parameters into the corresponding axis in the Reset Param dialog

and click Save. Then you can continue with the zeroing process.)

77

 If it is not possible to identify whether the robot system was manufactured before or after

S03.21R, please contact the manufacturer to check whether the parameters are retained by the

manufacturer. If yes, reset the parameters as described above.

(b) When switched to zeroing mode, if the encoder's multi turn value exceeds 2000, a pop-up

prompt will appear, triggering an emergency stop and generating a permanent alarm. In this case,

you need to restart the controller and perform zeroing operation again.

The current shaft encoder has too many turns, and the number
of turns has been automatically cleared; Please restart the

controller and re-enter the zero return mode

(c) When switched to zeroing mode, the robot is automatically enabled, please pay attention to

safety.

(5) Start zeroing

Take the J2 axis as an example, select J2+ and click Begin.

Note:

 To ensure accuracy, the zeroing is slow and may take a few minutes. (To accelerate the

zeroing process, you can move the axis to about 10° from the hard stop before starting

the zeroing operation.)

78

Status:Homing

in progress...

 When the zeroing is complete, the status displays "Homing succeeded" and the Calibration

value is updated.

Status:Homing

succeeded

14879753

 (6) Update the zero point.

Perform emergency stop manually and then click Apply.

In the pop-up prompt, click Yes. Then the calibrated zero point values will be applied and

replace the current zero point values.

79

Status:Homing

succeeded

14879753

Please confirm that the limit position has been reached; It should
be noted that after saving the zero point, it may cause the point
position in the program to no longer be Suitable; Do you want to

continue?

14879753

Status:Homing

succeeded

Note: If you click Apply without making emergency stop first, a pop-up prompt will appear.

80

Status:Homing

succeeded

14879753

Please set the zero point
parameter in the emergency

stop state

 (7) Post-zeroing check

After updating the system zero point, check the zeroing effect.

4.2.3.3 Cautions

Please note that:

1) If you want to zero the J3 and J4 axes, please install the zeroing tooling first*.

2) Before zeroing, ensure that the positive and negative hard stops of J1 and J2 axes, as well as

the limit ring of J3 axis are unchanged as they left the factory.

3) Remove the fixture to avoid entanglement of the air tubes, preventing mistaken belief that the

robot has reached the hard limit position.

4) The movement direction of all axes during zeroing is positive. Clear items between the

current position and the positive limit stop to eliminate interference.

5) Only one axis can be zeroed at a time. If you want to zero multiple axes, zero them one by

one.

6) If you are prompted for missing parameters, please reset the parameters under the guidance

of the manufacturer.

7) When switched to zeroing mode, if the encoder's multi turn value exceeds 2000, a pop-up

prompt will appear, triggering an emergency stop and generating a permanent alarm. In this

case, you need to restart the controller and perform zeroing operation again.

8) After updating the system zero point, check the zeroing effect.

4.3 Installation Parameter Settings

You can configure the arm load parameters and the installation form of the robot.

a) Arm Load Settings

The arm load parameters all default to 0. After configuring the parameters, click the Save button

in the upper right corner to make them take effect.

Parameters:

81

Mass: The load mass of the tool, in kg;

X, Y, Z: The X, Y, and Z coordinates of the centroid relative to the joint coordinate system, in

mm;

A, B, C: Orientation of the load, currently not supported;

IX, IY, IZ: The moment of inertia of the load around the X, Y, Z axes of its centroid

coordinate system, in kg*m2.

Make sure all the load parameters are correctly set; otherwise, collision detection false alarms, too

long or short cycle time, or abnormal current may occur.

b) Installation Form Settings

The installation form settings are only available to 6-axis robots. You can choose to install the

robot on the floor (upright) or the ceiling (inverted). After modification, you need to click the Save

button in the upper right corner and restart the controller to take effect. This setting affects the

robot motion. Ensure that the setting matches the actual situation.

4.4 Motion Settings

a) Teach Parameter Setting

1. Jog

82

Jog: You can customize the step value of jog, which can be used when you select .

Level Joint (deg) Linear (mm) Orientation (deg)

G1 (short) 0.05 0.05 0.05

G2 (medium) 0.5 0.5 0.5

G3 (long) 2 2 2

U (user-defined) Max: 10

Min: 0.01

Max: 10

Min: 0.01

Max: 10

Min: 0.01

2. Velocity

Definition: The maximum velocity of robot during teaching.

Velocity = Velocity setting * Velocity percentage selected in tool bar.

Setting range:

83

1. Max TCP Vel: 0.01 to 9999999.999;

2. Max Orientation Vel: 0.01 to 9999999.999;

3. Max Joint Vel: 0.01 to 9999999.999;

Setting permissions:

Manager, InoTeachPad control, edit mode

Note:

1. The actual effective value is subject to the controller, and the controller will read back the set

value each time the set value is saved. Therefore, if the set value is out of range, it will not take

effect.

3. Acceleration

Definition: The maximum acceleration of robot during teaching.

Setting range:

1. Max TCP Acc: 0.01 to 9999999.999;

2. Max Orientation Acc: 0.01 to 9999999.999;

3. Max Joint Acc: 0.01 to 9999999.999;

Setting permissions:

Manager, InoTeachPad control, edit mode

Note:

1. The actual effective value is subject to the controller, and the controller will read back the set

value each time the set value is saved. Therefore, if the set value is out of range, it will not take

effect.

2. What is set here is the velocity and acceleration of the robot's motion in various coordinate

systems. In teach mode, the parameters set here are not used for single-step or continuous

84

operation of the robot, instead, 50% of the operating speed and acceleration is used.

b) Run Parameter Setting

In the play mode, the parameters in the following figure are used.

In the teach mode, single-step operation or continuous operation is performed at 50% of the

velocity and acceleration set here. However, the deceleration set here is used in the same way in

both teach mode and play mode.

Velocity: The maximum velocity during operation.

The following figure shows the definition of the actual operating velocity:

Acceleration: The maximum acceleration during operation.

Deceleration: Deceleration for stop.

Note: The above parameters are subject to performance of the servo system.

85

Transition Settings:

You can set the unit transition length here.

c) Axis Parameter Settings

AxisLimit: The limit position of each axis. For safety reasons, always set the axis limits within the

range of mechanical stops.

The J4 axis limit of the floor-mounted SCARA robots and the ceiling-mounted SCARA robots

ranges from -36000° to 36000°. The J6 axis limit of the 6-axis robots ranges from -720° to 720°.

FollowError: This parameter is determined by the robot's commanded acceleration and the

servo's stiffness. When an alarm is generated as the FollowError is too large, reduce the

acceleration or increase the FollowError setting.

ArrivalError: This parameter defines the allowable error between position planned for the robot

and the actual position the robot reaches.

CurrentLim, AvrLoadLim: See 7.10 Current Protection.

Note: ArrivalError, FollowError, CurrentLim and AvrLoadLim can only be modified in the

Factory mode.

d) Interference Area Settings

An interference area is a cuboid determined by X, Y and Z coordinates of two points of a diagonal.

You can set eight interference areas. Interference areas take only positions into account. When

interference areas are activated, an error is generated upon entry of the robot into the interference

areas. Multiple interference areas can be activated at the same time.

To edit an interference area, click on its serial number and then edit the parameters on the right

side.

To activate an interference area, check the corresponding checkbox.

86

Note:

The detection of entry into the interference areas is only applicable to the end of the robot, not to

the tool.

After entering the interference zone, the robot cannot immediately stop as deceleration takes time.

Therefore, it is recommended to set the interference area to be larger than the actual one.

e) Collision Detection Settings

Collision detection parameters are divided into collision detection parameters for teach mode and

collision detection parameters for play mode. The collision detection parameters for teach mode

only take effect in teach mode, while the collision detection parameters for play mode take effect

in the teach mode.

The collision detection parameters include three types of parameters: collision detection switch

(ON/OFF) for each axis; collision detection sensitivity for each axis, ranging from 25 to 300, with

a default of 100; and event triggered upon collision, the supported events currently only include

Error and Stop.

87

In addition to the above parameters, three buttons are provided.

The Open All and Close All buttons open or close the collision detection switch of all axes at the

same time.

The Show Recommend button gets the system recommended sensitivity. When you click the

Show Recommend button, the button text changes to Hide Recommend and an Apply button

appears below and the recommended sensitivity values are displayed on the right side. Four or six

recommended sensitivity values are displayed and these values are updated approximately every

3s. The recommended sensitivity is automatically reset to 75 each time the controller is powered.

Each time the robot moves, the system automatically calculates the recommended sensitivity value,

which is updated when the system calculates the recommended sensitivity value greater than the

value displayed. The Reset to 75 button restores the displayed recommended sensitivity value to

75. If the robot has experienced slight contact or other accidents that have caused the

recommended sensitivity value to increase abnormally, you can click this button to calculate the

recommended sensitivity again.

There are several recommended sensitivity changes that require special attention:

1. When there is a significant change in the operating conditions (such as a significant increase

or decrease in load or velocity, or a slight collision or contact that has caused an abnormal

increase in recommended sensitivity), in order to avoid false alarms and ensure sufficient

sensitivity, it is recommended to reset the recommended values and apply the latest

recommended values.

2. After the robot runs for a long time, due to changes in joint friction and other factors, even if

it still operates under the same working conditions, the recommended sensitivity values may

also change. When the sensitivity change is within 10%, the collision detection sensitivity can

be adjusted less frequently (unless a false alarm has already occurred). When it exceeds 10%,

it is recommended to apply the latest recommended values.

3. When the recommended value is less than 100%, it is not recommended to change the

sensitivity to a value less than 100%; otherwise false alarms may occur when the working

conditions change. Set the sensitivity between 75% and 100% only when there is a high

requirement for collision detection sensitivity.

4. When you manually change the velocity in the play mode, a false alarm can occur when the

changes are large (e.g., directly from 25% to 100%), even if the recommended sensitivity at

100% velocity is used. This is normal. It is recommended to switch the velocity step by step

and slowly, e.g. from 25% to 50%, then to 80%, and finally to 100%.

88

The commissioning procedure for collision detection is as follows:

1） Set the load parameters

The load parameters include mass, eccentricity, inertia, etc., which can be calculated from the

3D model of the load. For loads with a simpler shape, the load parameters can be calculated

simply by referring to the calculation method in the appendix.

Enter the calculated load parameters into the selected tool load or grip load as shown in the

following figure.

2） Activate the corresponding tool load

There are two ways to activate a tool load: a) Add the corresponding tool number to the

motion instruction, which takes effect in the playback and in the single-step or continuous

89

operation, and b) Switch to the corresponding tool number in the Coordinate interface, which

takes effect in the jog state.

3） Activate the corresponding grip load

There are two ways to activate the grip load: a) Activate the specified grip load in the

program via the instruction GripLoad, which takes effect in the playback and in the single-step or

continuous operation, and b) Switch to the corresponding grip load number in the Monitor

interface, which takes effect in the jog state (if the grip load number is not changed in the program

using the instruction GripLoad, the grip load number set in the Monitor interface is always in

effect).

4） Set collision detection parameters for the teach mode

Turn off collision detection switch for the teach mode, click the Save button. Then click

Show Recommend to show the recommended sensitivity values.

After a period of normal motion in the teach mode, return to the collision detection parameter

setting interface. Click Apply to write the recommended values, then turn on the collision

detection switch, and click the Save button.

90

Note: The recommended sensitivity is only updated upon motion in the teach mode. If the

recommended value is less than 100, the interface will keep refreshing until the recommended

value is greater than 100. If the recommended value is found to be less than 100, check if motion

has been performed in the teach mode or if the motion has been performed for sufficient time

(approximately 30s; recommended more than 2 minutes).

5） Set the collision detection parameters for the play mode

Similar to the commissioning process of collision detection parameters for the teach mode,

first turn off the collision detection switch for the play mode and then click the Save button.

Then click Show Recommend to show the recommended sensitivity values.

91

After a period of normal motion in the play mode (recommended for more than 5 minutes), return

to the collision detection parameter setting interface. Click Apply to write the recommended

values, then turn on the collision detection switch, and click the Save button.

If a collision alarm occurs, proceed as follows:

1) Check that the parameters are correct. i) Check if the collision detection sensitivity is too low.

False alarms are more likely to occur when the sensitivity is less than 100. Make sure all

sensitivity values are greater than 100. ii) Check that the load matches the set tool load. Check

that the correct tool number is activated. When false alarms occur in the playback and in the

single-step or continuous operation, check that the instruction includes the tool number and

whether the tool number is correct. Check that the corresponding tool load parameters are

correct. Check that the eccentricity is set correctly, especially in case of high eccentricity. iii)

Check that the load matches the set grip load. Check that the correct grip load number is

activated, that the correct grip load number is activated correctly using the instruction

GripLoad, or that the grip load number is correct on the Monitor interface; check that the

corresponding grip load parameters are correct. Check that the eccentricity is set correctly,

especially in case of high eccentricity.

2) If none of the previous parameter checks indicate a problem, check the robot operating

conditions. i) Check whether there is a significant difference between the operating conditions

when the sensitivity is set and the actual conditions when the alarm occurs. The required

collision detection sensitivity may vary under different operating conditions. In addition, if the

ambient temperature at the time of the alarm differs significantly from that when the

sensitivity is set, it may also affect the collision detection. In this case, apply the latest

recommended sensitivity. Ii) Check whether the robot comes into contact with the outside

world during its movement. In the event of contact with the outside world, because the contact

force is unpredictable and therefore the moment fed back to the robot’s motor is unpredictable,

92

the collision detection sensitivity set can no longer be used. In this case, it is recommended to

use instruction SetAxisCollLevel to temporarily increase the detection sensitivity near

instructions that may cause the robot to come into contact with the outside world in the

program, or use the instruction SetAxisCollMode to temporarily turn off the collision

detection function. This method works only in the play mode. iii) Check whether there is

severe shaking when the robot is moving. Severe shaking greatly affects the collision

detection and is prone to false alarms. In this case, it is recommended to increase the set

sensitivity by 10 to 30 based on the recommended value.

3) Inspect the manipulator. i) Check that the robot base or end gripper is properly secured. ii)

Check that the brake on the axis which produces the alarm is released. Turn off collision

detection, run the alarm axis alone at low speed in teach mode, observe the current protection

interface to see if the average load rate and maximum current of the axis are large. If so, check

the servo parameters or cables of the brake. iii) Rotate the alarm axis vigorously and observe

if there is a large gap in the robot. If the gap is large, it indicates that the reducer or timing belt

is abnormal and needs to be disassembled for inspection. iii) If the previous inspection

indicates no problem, it is possible that the reducer is damaged. Please export the fault

information and contact the manufacturer for analysis.

4) If a collision alarm occurs when the collision detection switch is turned off, and all above

investigations and attempts cannot solve the alarm, you can try to turn off the second level of

collision detection. To turn off the second level of collision detection, set the collision

detection sensitivity to 300 through user interface and turn off the collision detection switch

through instructions or user interface. It is recommended that the settings be made only near

instructions that are prone to false alarms and that the normal collision detection settings be

restored as soon as possible in the subsequent programs.

f) Advanced Functions

1 Closed-loop Vibration Suppression

The motion mode option is only available to the IRCB500 series controllers which are equipped

with data acquisition board. The configurable parameters are as follows:

Vibration suppression mode: ON, OFF

Data acquisition board alarm level: 0-Alarm OFF, 1-Low sensitivity, 2-Medium sensitivity, 3-High

sensitivity

93

Note:

When the data acquisition board is missing or damaged, the data acquisition board alarm level

needs to be set to 0-Alarm OFF to avoid continuous alarms.

2 Self-learning Vibration Suppression

See 7.13 Self-Learning Vibration Suppression.

3 Torque Model Correction

When RapidMove is enabled, the system automatically generates motion trajectories based on the

model. If the model is inaccurate, it will cause excessive current and cause an alarm. In this case,

you can set the model error parameters to avoid the alarm.

Manual setting: If the overcurrent alarm still occurs after the load is set correctly, the torque

correction factor for the corresponding axis can be set to a value less than 1. The smaller the value

the lower the current and the slower the movement.

Note: This factor alters the joint output. When this factor is reduced, all RapidMove-enabled

motion instructions will slow down. Therefore, if there is only one point with high current, try to

reduce the local acceleration factor for the corresponding instruction first.

94

Automatic setting:

Automatic setting is to automatically identify the deviation between theoretical current and actual

current based on the data recorded before the alarm, and automatically calculate the model error

coefficient, as follows:

Step 1: Stop the robot after the overcurrent alarm occurs.

Step 2: Click the Auto Learn button and wait for the pop-up prompt that learning is complete.

Step 3: Click the Use Learn Result button and the learning results will be copied.

Step 4: Click the Save button to save the parameters to the project file and then run the program

for verification.

Note that automatic learning is based on data from the period of motion prior to the alarm. The

learning results only ensure that there will be no further alarms during this period of motion. There

may be alarms during the execution of new motion and learning needs to be performed again.

4.5 Peripheral Settings

4.5.1 Bus Switch

You can configure three fieldbuses including Modbus, Ethernet/IP and EtherCAT. Note that only

one fieldbus can be activated at a time.

a) Modbus Settings

ModbusRTU and ModbusTCP can be activated at the same time for the robot controller.

Regardless of ModbusRTU or ModbusTCP, the robotic controller can only be configured in

InoTeachPad and InoRobotLab as a Modbus slave, not as a Modbus master.

Operation Procedure

Go to Set > External > Bus Switch > Modbus, as shown below:

The status of ModbusRTU and ModbusTCP function is indicated. You can activate or deactivate

the function and save the change to make it take effect.

In the ModbusRTU function, the frame delay is dependent on the baud rate. The larger the baud

rate the smaller the frame delay.

95

In the ModbusTCP function, the port number is fixed to 502 and the frame delay can be set as

needed.

There is no sequential requirement for parameter settings and the operation of function

activation/deactivation. All configurations are saved to the controller only when you click the

Save button.

Operation Result

After the operation is complete, the Modbus client can be used for communication to verify the

configuration.

Note

1. If Modbus for the robot controller has already been configured through InoRobShop, it is not

allowed to configure the Modbus through the teach pendant again. If you want to control via the

teach pendant , there are two options:

（1） Clear the configuration on the teach pendant using the "Clear PLC Settings" function;

（2） Download a secondary development project with no Modbus configuration via the teach

pendant.

For more information on how to use the Modbus function, see the "Inovance Robot Modbus User

Guide".

b) Ethernet/IP Settings

You can activate or deactivate the Ethernet/IP slave function of the robot. After configuration,

click the Save button in the upper right corner to make the change take effect. The interface also

shows the port number and connection status of the slave. When there is a master connection, a

green light is visible and the IP address and port number of the master can be displayed.

For more information on how to use the Ethernet/IP function, see the "Inovance Robot Ethernet/IP

User Guide".

c) EtherCAT Settings

d) This feature is optional and can only be used on controllers that support the EtherCAT

slave function.

e) You can activate or deactivate the EtherCAT slave function of the robot and configure the

relevant parameters.

f) After configuration, click the Save button in the upper right corner to make the change take

96

effect. You can configure the alias and maximum number of frame drops for the slave.

g) It also displays the EtherCAT connection status. When not connected, red indicator is

displayed. When there is a master connection, green indicator is displayed.

h) Note: After the slave alias is modified, the robot needs to be powered up again to make

the change take effect.

i) For more information on how to use the EtherCAT function, see the "OMRON PLC and

Inovance Robot EtherCAT User Guide".

j) MC Settings

You can activate the MC function of the robot controller to make the robot act as a slave.

Currently, it supports connection to up to four masters.

Operation Procedure

You can select an address from the list and create a new connection or break the existing

connection.

The MC function can be activated or deactivated directly by toggling the switch. To create a

connection to an external MC device, click the New Connection button, enter the IP address and

97

port number of the MC device.

To disconnect the controller from the MC device, select the MC device and click the Disconnect

button.

Note: The IP address and port number of the MC device cannot be modified after the controller

successfully connects to the MC device. You can check the auto-reconnect option only after the

controller successfully connects to the MC device. When the auto-reconnect option is selected, it

is not allowed to modify the IP address and port number.

4.5.2 I/O Mapping

The remote I/O control function enables the control of program start/stop, reset, emergency stop of

the robot with I/O (including digital I/O, fieldbus I/O and memory I/O), as well as monitoring of

the execution and fault of the robot program.

The I/O mapping setting is to map some of the instructions in the remote I/O control function to

the robot's In signal, the robot's state to the robot's Out signal, to achieve the purpose of

controlling the robot with the In signal and monitor the robot through the Out signal.

Operation Procedure

Go to Set > External > I/O-Mapping, as shown in the following figure.

To modify the I/O mapping, click an I/O in the I/O column, enter the I/O number in the pop-up

dialog. If you do not want to modify any I/O, enter "NULL".

98

For the teach pendant, only the I/O mapping for the following functions is supported:

I/O Function Description

Input

(Used for external

control)

Start

program

In Remote I/O control mode, start the current program, rising

edge active.

Stop

program

In Remote I/O control mode, stop the program, rising edge

active

Reset

program.

In Remote I/O control mode, reset robot program, rising edge

active (can only be reset in stop state).

Enable In Remote I/O control mode, enable the robot, both rising

edge (enable) and the falling edge (disable) active.

Emergenc

y stop

In Remote I/O control mode, place the robot into an

emergency stop, non-emergency stop command at ON, and

emergency stop command at OFF.

Clear

alarm

In Remote I/O control mode, clear the alarm, rising edge

active.

Increase

velocity

In Remote I/O control mode, increase the global operating

velocity of the system by 5% at a time, rising edge active.

Decrease

velocity

In Remote I/O control mode, decrease the global operating

velocity of the system by 5% at a time, rising edge active.

Homing In Remote I/O control mode, return the robot to the work

origin 0, rising edge active.

Switch to

teach

mode

In Remote I/O control mode, switch the robot to the teach

mode, rising edge active.

Switch to

play mode

In Remote I/O control mode, switch the robot to the play

mode, rising edge active.

Output

(Used for state

display)

Program

run state

In any control mode, the specified I/O outputs an ON signal

when Task 0 is in running state.

Program In any control mode, the specified I/O outputs an ON signal

99

stop state when Task 0 is in stop state.

Program

reset state

In any control mode, the specified I/O outputs an ON signal

when the program is reset successfully.

Robot

enabled

state

In any control mode, the specified I/O outputs an ON signal

when the system is enabled.

Robot

emergenc

y stop

state

In any control mode, the specified I/O outputs an ON signal

when the system is in emergency stop state.

System

fault state

In any control mode, the specified I/O outputs an ON signal

when the system has a fault.

System

warning

state

In any control mode, the specified I/O outputs an ON signal

when the system encounters an alarm.

Servo

fault state

In any control mode, the specified I/O outputs an ON signal

when the servo has a fault.

Servo

warning

state

In any control mode, the specified I/O outputs an ON signal

when the servo encounters an alarm.

Safety

door

warning

state

In any control mode, the specified I/O outputs an ON signal

when the safety door encounters an alarm.

System

startup

completio

n state

In any control mode, the specified I/O outputs an ON signal

when the system finishes startup.

Robot

motion

state

In any control mode, the specified I/O outputs an ON signal

when the robot is in moving state.

Robot

arrival

state

In Remote I/O control mode, the specified I/O outputs an

ON signal when the robot reaches the destination by

executing the direct motion instruction.

Bus

communic

ation

heartbeat

In any control mode, as long as the I/O is configured, an

ON-OFF state switch occurs continuously, with a default

switch interval of 1s.

Note:

1. The teach pendant only supports the I/O mapping for some basic functions such as program

execution and monitoring. For the I/O mapping for advanced functions such as position point

modification, perform the configuration in InoRobotLab.

2. If you are prompted that a selected I/O is already in use but cannot find the function to which

100

the I/O is mapped, it indicates that the I/O is mapped to another function through InoRotLab. You

can open InoRobotLab to view the configuration.

3. The input configurations in the I/O mapping take effect only in the Remote I/O control mode.

The output configurations take effect in any control modes.

3.The output port selected in the I/O mapping will be occupied by the system and can no longer be

controlled through the monitor panel or through the instructions.

4. The run state and stop state in the output configuration refer to run state and stop state of the

program, rather than start state and stop state of the robot motion. Once started, the robot will

remain in motion until it is commanded to stop or stopped due to a fault.

5. After the robot is placed into emergency stop through an In signal, if you switch the robot

control to InoTeachPad, the emergency stop will be automatically released.

4.5.3 Project ID Settings

Different projects contain different recipes. If the robot is controlled by a device other than

InoTeachPad, you need to switch the project via the field bus. The system includes 256 project IDs.

You can set the project path corresponding to each ID in the I/O mapping.

Operation Procedure

Operation Instance

Open project ID settings: Go

to Set > External >

ProjNum-Cfg. The teach

pendant obtains the project

configuration information

from the controller.

101

Display project information:

The obtained project ID

configuration information

are displayed. The

information may be

presented by multiple pages.

You can switch the pages

and go to the specific page

by entering the page number.

If the entered page number

exceeds the total number of

pages, a prompt will be

given.

Add a project ID: You can

add a project ID and assign

it to a project. By default,

the project ID is

automatically generated.

Only Editor, Manager and

Factory users can add the

project ID. If you are not

satisfied with the generated

ID, enter another value that

has not been used. You can

select a project from the

Project Name drop-down

list. The list contains

projects that have not been

assigned with a project ID.

If all projects have been

assigned with a project ID,

no new project ID can be

added.

Delete a project ID: Select a

project ID and click the

Delete button.

102

Edit the project ID:

Double-click a row to edit

the selected project ID. One

project ID uniquely

corresponds to one project.

Note: All of the above settings need to be saved before they can take effect. The settings will be

lost if you switch to another interface without saving them.

4.5.4 IRLink Settings

IRLink is a custom communication protocol used by the IMC100 series expansion modules to

manage the networking and parameter settings for expansion modules such as robot I/O, AD, DA,

and encoders. Configuring IRLink on the teach pendant requires IRlink configuration permissions.

IRLink control is defaulted to the teach pendant or INOBOTLAB. Once IRLink has been

configured via InoRobShop, IRLink control is transferred to InoRobShop. In this case, when you

change the IRLink configuration via teach pendant or InoRobotLab, an error message will be

given. To obtain the IRLink control on the teach pendant, cancel the IRLink configuration on the

InoRobShop or use the "Clear PLC Configuration" function.

IRLink Configuration Specifications:

 For the IRCB10 series controllers, you can add I/Os only through the expansion modules.

Each RTU (IRlink communications expansion module) has power consumption limits. The overall

IRLink configuration is subject to resource limits.

 For the IRCB300, IRCB100 series controllers, you can add I/Os through expansion cards and

expansion modules.

Up to four expansion cards are supported, with no power consumption limits. The overall IRLink

configuration is subject to resource limits.

 For IRCB500 series controllers, you can add I/Os sequentially only via expansion cards (up

to 4 expansion cards are supported).

Note: The expansion cards supported by the IRCB500 series controllers are different from those

supported by the IRCB300 and IRCB100 series controllers!

(1) Power consumption specifications for the RTU

Each RTU can deliver 15W of power. The following table describes the power consumption of the

respective modules.

Type Power Consumption

IMC100-0808-ETND 1.44W

IMC100-1600-END 1.25W

IMC100-0016-ETPD 1.25W

IMC100-0016-ETND 1.25w

IMC100-4DA 1.44W

103

IMC100-8AD 2.88W

IMC100-2ENID 2.88W

Make sure the sum of the power consumed by the modules after each RTU does not exceed the

power capacity of the RTU. If more modules are required, add a RTU and then cascade the

modules after the RTU.

(2) Resource specifications

The total resources supported by the IMC100 are limited. Refer to the table below to configure the

modules so that the total number of channels of the modules does not exceed the maximum

capacity of the IMC100.

Object Number of

DI channels

Number of

DO channels

Number of

AI channels

Number of

AO channels

Number of

encoder

channels

IMC100

capacity

64 64 16 16 8

Occupancy by

one 1616 module

16 16

Occupancy by

one 0808 module

8 8

Occupancy by

one 1600 module

16

Occupancy by

one 0016 module

 16

Occupancy by

one 8AD module

 8

Occupancy by

one 4AD module

 4

Occupancy by

one 4DA module

 4

Occupancy by

one 2ENC

module

 2

Code Expansion Module Expansion Card Drive-control integrated expansion card

0808 IMC100-0808-ETND

1600: IMC100-1600-END IRCB-1600END-BD IRCB500-1600END-BD

0016 IMC100-0016-ETPD

IMC100-0016-ETND

IRCB-0016ETND-BD

IRCB-0016ETPD-BD

IRCB500-0016ETND-BD

8AD IMC100-8AD

4AD IRCB-4AD-BD

4DA IMC100-4DA IRCB-4DA-BD

2ENC IMC100-2ENID IRCB-2EN1D-BD IRCB500-2ENID-BD

1616: IRCB-1616ETND-BD, standard inside the IRCB300 series controllers.

104

Note:

For IRCB300 series controllers, the system is equipped with one 1616 module as standard.

For IRCB100-6AT series controllers, the system is equipped with the following three modules as standard: 1616,

0016, 1600.

For IRCB500 drive-control integrated controllers, the system does not have a standard IRLink module.

IRLink Configuration Method

After the hardware device is connected, you can make IRLink configuration in InoTeachPad.

Click the Add button on the left. An RTU is generated automatically and the details of the RTU

are displayed on the right. You can add up to five RTU expansion modules.

Click the Add button on the right, it will pop up a box with 0808, 0016, 1600, 4DA, 8AD, 4AD,

2ENC.

Add an expansion module according to the actual connection.

For example, add four 0808 modules, one 4DA module, and one 8AD module, as shown in the

following figure.

For the 8AD, 4DA, 2ENC modules, click the module to access the configuration page.

Module Setting Dialog Parameters

105

8AD

(4-channel

voltage,

4-channel

current

analog

conversion

input

expansion

module)

You can configure

the analog input

range and the

oversampling rate.

The same

configuration applies

to all channels. The

range is -5V-5V,

0-20mA, and

-10V-10V, 0-40mA.

The over-sampling

rate affects the

sampling accuracy of

the input value. The

smaller the

oversampling rate,

the higher the

sampling accuracy.

4AD

(2-channel

voltage,

2-channel

current

analog

conversion

input

expansion

module)

Input range: -5V-5V,

0-20mA; -10V-10V,

0-20mA.

Oversampling rate:

3.125K, 6.25K,

12.5K, 25K, 50K,

100K, 200K.

Recommended:

3.125K

4DA

(4-channel

voltage/curre

nt analog

conversion

output

expansion

module)

You can set the range

of analog output for

the four channels.

106

2ENC

(2-channel

differential

input

incremental

encoder

expansion

module)

You can set

whether to reverse

the channels and

the signal filter

time. The filter

time is the product

of the sampling

depth and the

sampling time. The

longer the filter

time, the lower the

rated signal input

frequency.

References:

For IRLink configuration for IRCB10 series controllers, see IMC100 Series Controller Local

Expansion Module User Guide.

For IRLink configuration for IRCB300 series controllers, see IRCB300 Series 4-Axis Robot

Controller User Guide.

For IRLink configuration for IRCB300 series controllers, see IRCB300 Series 6-Axis Robot

Controller User Guide.

IRLink configuration for IRCB500 series controllers, see IRCB500 Series Robot Controller User

Guide.

4.6 System Settings

System settings include communication settings, time and date, user settings, language selection,

system features, and other settings.

a) Communication Settings

The communication settings include controller connection, network configuration, and

communication service management.

Controller Connection

The connection between the teach pendant and the controller can be made in two ways.

Connection Type Connect Method Characteristics

Connection to Ethernet

port 2 of the controller

(the IP address of

Ethernet port 2 is fixed,

192.168.23.25)

For the hand-held

teach pendant, plug

its connector into the

TP port of the

controller

The IP address of Ethernet port 2 is static,

192.168.23.25

For the PC-based

teach pendant,

connect the PC

where it is installed

to the PC port of the

The IP address of Ethernet port 2 is static,

192.168.23.25

The IP address needs to be set on the PC so

that it is in the same subnet as the controller.

For example, since the controller IP is fixed at

107

controller via a

network cable.

192.168.23.25, you can set the IP address of

the PC to 192.168.23.26.

Connection to Ethernet

port 1 of the controller

For the PC-based

teach pendant,

connect the PC

where it is installed

to the Ethernet port

of the controller (or

LAN port on some

controllers) via a

network cable.

The controller IP can be set to either dynamic

IP or static IP, see Network Configuration.

The IP address needs to be set on the PC so

that it is in the same subnet as the controller.

Setting IP address for connecting to the controller

For the PC-based teach pendant, configure the IP address of the PC where it is installed so that it

is in the same subnet as the controller. The following figure shows the modification of PC’s IP

address.

108

Network Configuration

When you need to modify the IP address of Ethernet port 1, do as follows.

Communications Service Management

It allows you to manage the socket configuration when the controller serves as a server or a client.

109

Description of client/server:

The controller can act as a client or server during communication with an external device. This

function is mostly used in vision process.

 Server:

The controller acts as a server and supports connection of up to four clients.

Open Server: Opens the server function by specifying the port number of the controller.

Note: The controller as a server supports connection of up to four clients. The server function is

open on the controller by default and the default port is 2000.

Close Server: Turns off the server function of the controller.

Disconnect: Disconnects the specified client from the server.

 Client:

The controller acts as a client and an external device acts as a server.

110

 New Connection: Connects the controller as a client to the server by specifying the server IP,

server port, and client port.

Disconnect: Breaks the selected connection.

Note: The camera communication configured in Function > VisionCalib is process-specific

communication and is not displayed in the ServiceManage interface.

b) Time and Date

This page displays the time and date in the controller.

Adjust the controller time via the Set Time button.

111

c) System Functions

Mechanical Lock

The robot cannot move in the mechanical lock mode.

Emergency Stop Trigger Mode

For IRCB500 series controllers, you can configure the emergency stop to be triggered via both

112

PC-based teach pendant and handheld teach pendant, or only via PC-based teach pendant.

When using a handheld teach pendant, select Both TP and PC.

When using PC-based teach pendant, select Only PC.

Note:

When you want to switch from PC-based teach pendant to handheld teach pendant, select Both TP

and PC and you will be prompted whether to disconnect InoTeachPad. Select Yes. The PC-based

teach pendant is automatically disconnected.

When you want to switch from handheld teach pendant to PC-based teach pendant, select Only

PC and you will be prompted whether to disconnect the handheld teach pendant. Select Yes. The

handheld teach pendant is automatically disconnected.

Emergency Stop Mode

For IRCB500 series controllers, the emergency stop mode can be configured to a Category 0 stop

or a Category 1 stop.

Category 0 stop: Stop in an uncontrollable manner through hardware circuit by immediately

removing the power to the motor, .

Category 1 stop: Stop in a controllable manner according to software planning.

Safety Door

See 7.9 Safety Door.

COM Switch

Open the COM switch before you can use the instruction Open Com. Restart the controller to

make the setting take effect.

113

Flying Trigger I/O

For the IRCB500 series controllers, the flying trigger-related I/Os can be configured.

User I/O Out[14] or Out[15] can be selected as the output port that triggers the servo latch

function.

See 7.6 Flying Trigger.

SN Match (Reserved)

For IRCB500 series controllers, the SN match function is available. This function is used to

protect the encoder from reversed polarity. When the system is powered on and started, the servo

drive SN and motor SN combination recorded in the controller is matched with the read SN

combination. An alarm is generated if the match fails. This alarm cannot be cleared and the system

needs to be repowered after recovery.

The SN match function is off by default. A switch is provided to turn SN match on or off.

Note: There are two prerequisites for using this function:

1. The motor used supports SN reading.

2. The SN code has already been reset by clicking the Reset SN button.

Work Mode of Start and Forward Buttons

This function configures how the Start button and Forward button work when

they are pressed and released in debug mode.

Click Release policy and the following pop-up dialog appears.

114

Two modes are available:

(1) Mode 1: Press to start and release to stop

(2) Mode 2: Press to start, no stop at release and the stop button must be pressed to stop

 Note: Mode 1 is selected by default.

 To change the mode:

（1） Select the mode.

（2） Click the OK button.

（3） When the notification bar indicates success, the save is successful.

 Description of the modes

 (1) Mode 1

: When you have completed program editing and switched to the debug mode, press

this button to start the program and release the button to stop the program. If you want the

program to run until it ends, keep the Start button pressed.

: When you have completed program editing and switched to the debug mode, press

this button to execute the line of instructions where the cursor is located and release the button to

stop the execution. To run the current line of instructions completely, keep the Forward button

pressed.

(2) Mode 2

: When you have completed program editing and switched to the debug mode, press

this button to start the program and the program will run until it ends if the Stop button is not

pressed.

: When you have completed program editing and switched to the debug mode, press

this button to execute the line of instructions where the cursor is located and the line of

instructions will be fully executed if the Stop button is not pressed.

 Note:

 When a non-static task is running, the work mode cannot be modified.

115

d) Other Settings

Other settings include TeachPad Set, Back&Load, System, Debug and Others. See the following

figure. TeachPad Set is valid for handheld teach pendant only.

Screen Calibration: Solves the problem of inaccurate touch on the touch screen. Use the stylus to

tap the "+" symbol that appears in sequence on the screen, then tap any blank space on the screen

to complete the screen calibration.

Note: You can also access the screen calibration by pressing the External Axis button for 10

seconds. Screen calibration is often required after the system is flashed.

Screen Flip: By default, the display of the teach pendant is suitable for holding the teach pendant

with the left hand. For the ITP100 teach pendant, the screen can be flipped for the holding the

teach pendant with the right hand.

Note: After confirmation, the system automatically enters the screen calibration interface and you

must re-calibrate the screen.

Brightness and Screensaver:

116

Brightness: A total of six brightness levels 1-6 is available.

Screensaver: You can activate the screensaver and set screensaver time.

Joystick Calibration: For ITP100 teach pendant only. Only the Factory user can calibrate the

joystick. The joystick movement directions include left and right (Y-/Y+), up and down (X-/X+),

clockwise/counterclockwise (Z-/Z+). You need to operate the joystick according to onscreen

instructions.

Rocker Invalid Range: Controls the sensitivity of the joystick at the software level, 300 by default.

The larger the value, the less impact your movements have; the smaller the value, the more impact

your movements have. It is recommended not to change this value!

Config Backup

*All robot-related setting parameters are saved in the file RobotInfo.cfg, including the following

parameters.

Config

backup,

add-ins

1. PLC program

2. Robot settings; zero point settings; installation parameters; motion

parameters; peripheral configuration; and communication settings in system

settings.

3. Robot user account

4. Robot model, controller information (only backup without loading, for robot

and controller match check)

117

Insert a USB drive into the controller and click this button. The robot configuration file is backed

up to the root directory of the USB drive.

Note:

Before operation, insert a USB drive into the controller and check the connection status of the

USB drive. If the monitored communication status in the teaching software displays "The USB

controller has been inserted into the device and successfully mounted", it indicates that connection

is successful. Otherwise, check the connection. Keep the USB drive connected during operation.

Config Load

Prepare the configuration file RobotInfo.cfg under the root directory of the USB drive in advance.

Insert the USB drive into the controller and click this button to load the file into the controller.

Then power on the controller again to make the changes take effect.

Note:

(1) Before operation, insert a USB drive into the controller cabinet and check the connection status

of the USB drive. If the monitored communication status in the teaching software displays "The

USB controller has been inserted into the device and successfully mounted", it indicates that

connection is successful. Otherwise, check the connection. Keep the USB drive connected during

operation.

(2) Loading configuration files of different robot models is not allowed.

SD Card Backup

The following describes the backup contents:

 Version 14 and earlier Version 15 and later Version 17 and later

SD card

backup

1.TeachProgram

2.PalletInfo

1.TeachProgram

2.PalletInfo

3.TecParameter

1.TeachProgram

2.PalletInfo

3.TecParameter

4.robot_other_pfile

SD card load
1.TeachProgram

2.PalletInfo

1.TeachProgram

2.PalletInfo

3.TecParameter

1.TeachProgram

2.PalletInfo

3.TecParameter

4.robot_other_pfile

TeachProgram: A program folder that contains all the project files.

PalletInfo: A pallet folder that contains the pallet information, and imported external point files

".pt ". It is required when pallet variables are used.

TecParameter: A process folder that contains information about the screw locking and dispensing

process.

robot_other_pfile: BRD global variables, global translation variables, string variables, global

position variables P.

Insert a USB drive into the controller and click this button. The program in the SD card is backed

up to the root directory of the USB drive.

Note:

(1) Before operation, insert a USB drive into the controller cabinet and check the connection

between USB dive and SD card. If the monitored communication status in the teaching software

118

displays "The USB controller has been inserted into the device and successfully mounted" and

"The SD card has been inserted into the device and successfully mounted", it indicates that the

connection is successful. Otherwise, check the connection. Keep the USB drive and SD card

connected during operation.

(2) Precautions for loading backup files of different versions:

S01.15 and later are referred to as the new version.

For files backed up prior to S01.15 and loaded to system S01.15 and later, they can be used

normally, but the TecParameter will not be loaded (because it is not included in the backup file).

The system prompt that the version is too low and requires S01.15 or above.

For files backed up in S01.15 and later and loaded to system prior to S01.15, they can be used

normally, but the TecParameter will not be loaded.

The robot_other_pfile folder is backed up and loaded only in version 17 and later. If it is detected

that the robot_other_pfile folder does not exist during loading, it will be ignored.

(3) Due to differences in file storage types under Windows and Linux, do not edit the backed up

files, otherwise it may cause global string variables, I/O comments, etc. to show garbled characters

after the program is loaded.

SD card load

Prepare the corresponding file under the root directory of the USB drive in advance. Insert the

USB drive into the controller and click this button to load the program into the controller. When

the load is complete, reboot the robot as prompted.

Note:

Before operation, insert a USB drive into the controller cabinet and check the connection between

USB dive and SD card. If the monitored communication status in the teaching software displays

"The USB controller has been inserted into the device and successfully mounted" and "The SD

card has been inserted into the device and successfully mounted", it indicates that the connection

is successful. Otherwise, check the connection. Keep the USB drive and SD card connected during

operation.

Point File Load

Prepare a point file in a USB drive in advance. Insert the USB drive into the controller to load it to

the robot control system.

* The point file is suffixed with ".pt". The file contents are data information of position variables.

One line indicates one piece of position variable information. For the format of every line, see the

definition of position variables. Each line is divided into three paragraphs. The first six coordinate

parameters compose the first paragraph. The middle four arm parameters compose the second

paragraph. The last three parameters (coordinate system number, tool number, and user number)

compose the third paragraph. The paragraphs are separated by ";", and the parameters in each

paragraph are separated by ",".

An example is shown below:

119

System Update

Operation method:

 Select an item to update. The teach pendant and the controller can be updated simultaneously.

 Select the update package.

 Click the Begin button to start updating.

Note:

1. Update is applicable to the handheld teach pendant only, not to the PC-based teach pendant.

2. Do not cut off the power supply during controller update process, otherwise it may cause

abnormalities and can only be restored by flashing the controller!

Reset

You can initialize all robot setup parameters to default.

Note: Reset with caution because the zero point of the robot will be lost.

SD Formatting

Format the SD card on the controller into a program storage card suitable for the robot. This

operation will clear the program in the SD card. Therefore, it is recommended to back up the

program before formatting.

Note:

Before formatting the SD card, go to Monitor > Connection to check the status of the SD card. If

the monitored communication status in the teaching software displays "The SC card is connected

and successfully mounted", it indicates that connection is normal. Otherwise, check the

connection.

Clear Historical Alarm

Clear the operation records and alarm records in the monitoring interface.

120

Note: This operation clears both the operation records and the alarm records.

Clear PLC configuration

Click the Clear PLC-CFG button to clear settings made in InoRobShop.

Function:

Clears secondary developed PLC programs and various bus configurations, including external axis

configurations.

 For PLC programs, they will be cleared.

 For EtherCAT configurations (including external axes), the configurations will be reset to

default.

 For Modbus configurations, the configurations will be unlocked and retained.

 For IRLink configurations, in Version 18, the configurations will be unlocked and retained.

Typical use: IRLink and Modbus are configured for secondary development and cannot be edited.

When cleared with this function, the configurations will be unlocked and you can edit the IRLink

and Modbus.

Note: A restart is required to make the change take effect.

Network Debug

Debug communication of teach pendant and controller with other devices. It is equal to the Ping

function.

Enter an IP address and click this button.

Note:

The controller pings other devices when the teach pendant is connected to the controller.

The teach pendant pings other devices when the teach pendant is not connected to the controller.

Controller Debug

During operation, the controller can output and record process information, monitor the status and

flow of the controller for online viewing and post-analysis by the relevant personnel. Please

operate under the guidance of the manufacturer!

121

Debug object:

Name Description

Robot Core dispatch module

EtherCAT EtherCAT communication module

IRLink IRLink communication module

Trans Language interpreter module

ArmDsp ARM and DSP interaction module

RtKine Kinematics module

ShM Shared memory modules

GD Configuration information module

Debug level:

 For each debug object, you can select the level of logging, the more detailed the logging is

at the higher level.

Record level Description

0-None Do not log

1-Alert Only log the most serious errors

2-Critical Log critical errors

3-Error Log error-level events

4-Warning Log warning-level events

5-Notice Log notice-level events

6-Information Log general events

7-Debug Log all details

Use of debugging feature:

Click the LogSwitch button to open the log level selection interface. Check the object as

needed and select the corresponding level. The settings take effect immediately upon

confirmation.

122

(1) Online debugging: Prints information through the serial or TCP/IP port of the controller.

Serial port: Connect the controller through serial port. Note that the serial port on the

controller is RS485. A RS232 to RS485 adapter is generally required.

TCP/IP: Connect the controller via another device (such as a PC) over TCP/IP protocol, port

number 5555.

(2) Saving and exporting debug information:

The system automatically records the recent debugging information. In the SysDiagnose dialog,

check Path, click Begin, and then click Export to save the debug information to the USB drive on

the controller.

Teach Pendant Debug

For use by the manufacturer only.

System Diagnostics

Steps:

1) Check the diagnostic object.

The object includes System, Logic, and Path.

System: Contains internal configuration parameters, etc. of the system.

Logic: Contains the variable state during system operation.

Path: The trajectory of the robot motion.

2) Start diagnostics. The system saves files for the checked items. If you click Stop during

diagnosis, the current save operation will stop and the internal file will still be the last saved file.

3) Export the diagnostic report. The process of exporting the report is indicated by the progress

bar.

You can choose to export either the full diagnostic report or the report of the most recent

diagnosis.

Note: When an exception occurs in the diagnosis that causes an alarm, click Clear Alarm to clear

the exception before proceeding.

123

Servo Check:

During commissioning or use, it is necessary to change the servo parameters when replacing the

controller, servo drive, servo software, or due to excessive load. At this point, the servo parameters

may differ from the default parameters written on the production line. To ensure safety, it is

necessary to confirm whether the current servo parameters are within a reasonable range.

Servo parameter check includes power-on parameter check and operation parameter check. When

parameter check fails, a permanent alarm will be generated. In this case, do not operate the robot

and contact the manufacturer for help.

Do not turn off the servo parameter check function. If you indeed need to turn it off, turn off the

function in factory mode and restart the robot.

Control Device:

Click the Control Device button, and an interface appears. You can select which device has the

control of the robot.

When the control is not assigned to the teach pendant, a lock icon appears in the tool bar and you

cannot control the robot (including modifying parameters, running programs, etc.) through the

teach pendant. You can only use the teach pendant for monitoring purposes.

124

When the control is assigned to Remote I/O, you need to set the startup speed percentage (Start

Vel) for the first running of the program. Typically the speed is less than 100% to ensure safety.

Note: You can change the startup speed even when the control is already assigned to Remote I/O

or Remote Modbus.

Brake Release:

This function allows the unlocking and locking of one of the J1-J6 axes.

This feature is available only when the following conditions are met:

1) Control is assigned to the teach pendant

2) Manager user or Factory user

3) The robot is currently in an emergency stop

Operation steps:

1） Click the Brake button under Other tab.

2） Select the axis number.

You can select one of the J1-J6 axes. For example, when you select J1, you can see the

status of J1.

3） Release the brake.

a） Click the Release button.

125

There is a risk of joint falling after releasing
the brake,Are you sure you want to

perform the brake release operation?

Yes No

b） Click Yes.

Release

c） The notification bar prompts the result.

4） Close the brake.

a) Click the Close button.

 b) The notification bar prompts the result.

5） (Optional) Close the brake by exiting the setting.

a) When you close the setting interface by clicking the X sign, the brake of the currently

selected axis will also be closed. The notification bar prompts the result.

Note:

1） On the handheld teach pendant, when the brake of a certain axis is released, the

emergency stop button will be bounced. In this case, you can close the brake of the axis.

Only when the emergency stop button has been pressed again can you click the button to

126

release the brake.

2） When the axis number has been selected and the brake release is not applied, it is

allowed to close the brake as this is a safe operation.

4.7 Extended Functions

a) Vision Calibration

This function determines the relationship between the vision coordinate system and the robot’s

coordinate system. See 6.4 Vision Calibration.

b) Tracking Process Setting

This function configures the tracking process for the linear conveyor and circular turntables. In

conjunction with interaction with external cameras, dynamic grasping can be achieved. See 6.3

Tracking Process.

5 Monitoring

You can monitor information such as variables, I/Os, communication status, logs, etc.

5.1 Basic Operations

The following describes some basic operations on the monitoring interface.

Paging: You can browse through the list using the and buttons.

127

Modify: Double-click an object to directly modify it.

Favorite: For global value variables and I/Os, you can check/uncheck the items to add them to or

remove them from the favorites. You can click on the right to switch between the display

128

modes: display favorites, and display all.

5.2 Global Variable Monitoring

The global variables monitoring interface includes seven tabs: B, R, D, PR, String, P, and Inquire.

a) B/R/D Variables

Double-click a variable, and the following window where you can modify this variable value

appears.

b) PR Variables

Double-click a PR variable, you can directly enter a value or calculate it by taking two points.

129

c) Global String Variables

Double-click a string variable and modify it.

d) Global Position Variables

The values of the monitored global position variables are the current values.

Note:

1. The P variables in the programming interface are initial points defined in the global point file,

while the P variables in the monitoring interface indicate the current values. If an initial point is

modified through the instruction p=, the value of the point will be updated in the monitoring

interface.

2. The monitoring interface always displays all P variables from 0 to 9999. For unused P variables,

they are also displayed, with the value being null.

3. The refresh mechanism of P variables:

The P variable on a certain page will be refreshed when you click the refresh button, or when you

130

switch to the P page, or when you turn the pages of P variables, or when you locate a P variable.

The P variables are not refreshed in real time and can only be refreshed through these operations.

4. The P variables cannot be modified in the monitoring interface. If you want to modify the initial

values defined in the point file, make the modification on the programming interface; if you want

to modify the memory value without modifying the initial values defined in the point file, do the

modification on the quick monitoring panel of the debug interface.

Click on the right to switch between displaying the label and remarks of point and displaying

the coordinates of the point.

Click on the right to locate a specific point quickly.

e) Global Variable Query

For tool coordinate system, tool load, user coordinate system, and grip load, memory values can

be queried. After modifying the value using instructions, you can query the results here.

Select Type and Item and click Inquire.

Note: Switching interfaces will not cause a refresh.

131

5.3 I/O Monitoring

5.3.1 Introduction of Robot Bus Address

The following introduces the concept of robot bus address. The bus address of the robot is divided

into standard I/O, fieldbus I/O, and memory I/O, as shown in the following figure.

Standard I/O: Equivalent to digital I/O, that is, the I/O whose switching state is directly associated

with a high or low physical level.

Fieldbus I/O: The current fieldbus I/O of robots refers to the I/O used by the robot as a fieldbus

slave for data exchange with the master.

Memory I/O: Equivalent to Bool-type variables inside the robot, used for internal operations.

132

5.3.2 How to Use I/O Monitoring

Precondition: Ensure that IRLink configurations are correct before using I/O monitoring!

The I/O monitoring interface includes five sub-interfaces: IN, OUT, AD, DA, SysIO.

a) IN

1. Input (IN) I/Os includes common I/O, standard I/O, fieldbus I/O, and memory I/O, which can

be selected from the drop-down list, as shown in the following figure.

Description:

Common I/O: Refers to I/Os whose Label or Remark is defined.

For the definition of standard I/O, fieldbus I/O, and memory I/O, see Section 5.3.1.

2. Each type of I/O can be displayed by bit, by byte or by word.

Description:

8 bits equals 1 byte, and 16 bits equal 1 word (Example: The value of I/O consisting of bits

indexed from 0 to 7 corresponds to the value of InB[0]; the value of I/O consisting of bits indexed

from 0 to 15 corresponds to the value of InW.)

133

3. When you choose to display I/O by bit, the status may be ON or OFF depending on the return

value, 1 for ON, 0 for OFF, ON in red, OFF in black.

4. I/O displayed by byte and word can further be displayed in decimal, binary, or hexadecimal.

Decimal by default.

134

5. When you choose to display I/O by bit, the "Force" column is displayed. When the value of

"Force” column of an I/O is "Forced", you can click the column to change its value.

6. Description of columns

Force: Input signal state is determined by an external source by default. However, IN can be

changed to "Forced" state using the forced switch. In this case, signals can be manually forced to

be ON or OFF.

Status: Displays the current status. In particular, for the standard I/O, you can click the signal

value to reverse the state.

Label: The label string of the I/O corresponding to the I/O variable name.

Remark: The remark string of the I/O corresponding to the I/O variable name.

Note:

You can monitor the IN variables in Monitor in the debug mode (for details, see the detailed

description of the Monitor function in Section 3.4.)

Enter debug mode, click Monitor, check the Pick option; or select Custom base type, enter the

variable name, click Add and then the variable is automatically displayed in the list of monitored

objects.

b) OUT

The operation on the OUT variables is generally similar to that on the IN variables.

Note: When the I/O is orange, you do not have control to change the ON/OFF status by clicking it.

135

Like input I/O, 8 bits equal to 1 byte, and the 16 bits equal to 1 word.

Note:

You can monitor the OUT variables in Monitor in the debug mode (for details, see the detailed

description of the Monitor function in Section 3.4.)

Enter debug mode, click Monitor, check the Pick option; or select Custom base type, enter the

variable name, click Add and then the variable is automatically displayed in the list of monitored

objects.

c) AD/DA

Type: Indicates that an analog signal is current or voltage.

Range: Analog signal range. Every analog port has several ranges for selection depending on the

IRLink product model.

Status: An analog parameter value. When it is a voltage signal, the unit is V; When it is a current

signal, it is measured in mA. Click the status to directly modify the status value.

Switch: Determines whether a DA status value is valid. You can change the value by clicking the

switch.

Label: Displays the label set in the project

Remark: Displays the remarks set in the project

Note: Labels and remarks cannot be modified here, please modify them in the project.

d) System I/Os

136

For the IRCB10 controller, System I/Os are In[0] to In[2] that are linked to emergency stop,

enable function and mode switching respectively and displayed on the IN/OUT interface.

For the IRCB300, IRCB100 and IRCB500 controllers, System I/Os have a separate SysIO

interface with 16 inputs and 16 outputs as follows:

IRCB300, IRCB100 and IRCB500 controllers

Input Function Output Function

SysIn[0] Emergency stop SysOut[0] System running indication

SysIn[1] Enable SysOut [1] System error indicator

SysIn[2] Mode switching

(Teach/Play)

SysOut [2] System enable indication

SysIn[3] - SysOut [3] EtherNet1 connection indication

On: Connected;

Off: Disconnected

SysIn[4] Safety door SysOut [4] EtherNet1 frame transmission

indication

Flash: Data is being transferred;

Normally on: Connected, but no data is

being transferred

SysIn[5] Safety door SysOut [5] EtherNet2 connection indication

On: Connected;

Off: Disconnected

SysIn[6] ITP100 enable SysOut [6] EtherNet2 frame transmission

indication

Flash: Data is being transferred;

137

Normally on: Connected, but no data is

being transferred

SysIn[7] - SysOut [7] -

SysIn[8] - SysOut [8] Robot enable indicator

SysIn[9] - SysOut [9] -

SysIn[10] - SysOut [10] -

SysIn[11] - SysOut [11] -

SysIn[12] - SysOut [12] -

SysIn[13] - SysOut [13] -

SysIn[14] - SysOut [14] -

SysIn[15] - SysOut [15] -

System I/Os of the IRCB500 controller

Input Function Output Function

SysIn[0] Emergency stop SysOut[0] Soft STO

SysIn[1] Enable SysOut [1] Robot enable indicator

SysIn[2] Mode switching

(Teach/Play)

SysOut [2]

SysIn[3] Start confirmation

signal

SysOut [3] EtherNet1 connection indication

On: Connected;

Off: Disconnected

SysIn[4] Safety door SysOut [4] EtherNet1 frame transmission

indication

Flash: Data is being transferred;

Normally on: Connected, but no data is

being transferred

SysIn[5] Safety door SysOut [5] EtherNet2 connection indication

On: Connected;

Off: Disconnected

SysIn[6] ITP100 enable SysOut [6] EtherNet2 frame transmission

indication

Flash: Data is being transferred;

Normally on: Connected, but no data is

being transferred

SysIn[7] - SysOut [7] -

SysIn[8] - SysOut [8]

SysIn[9] - SysOut [9] -

SysIn[10] - SysOut [10] -

SysIn[11] - SysOut [11] -

SysIn[12] - SysOut [12] -

SysIn[13] - SysOut [13] -

SysIn[14] - SysOut [14] -

SysIn[15] - SysOut [15] -

138

e) Description of Colors of I/O Monitor

In the I/O monitor, the variable names are differentiated by colors: blue, orange and black,

respectively.

Blue: Indicates standard I/Os connected to the actual device or bus I/Os assigned with an address.

Orange: Indicates the occupied output I/Os with control permissions other than RC_ ACTIVE and

whose status cannot be changed through monitoring interfaces or instructions.

Black: Indicates I/Os that meet the following conditions:

1、 Standard I/Os not connected to the actual device or bus I/Os not assigned with an address.

2. Occupied output I/Os with control permissions being RC_ ACTIVE.

Description:

1. The priority of orange display is higher than that of blue and black. When an I/O is displayed in

orange, if you want to know whether the I/O has blue or black attributes, you can infer based on

the color of the I/Os before and after it.

2. Control authority of output signals:

Control permissions Description

RC_STATIC It indicates occupation by the RC system. That is, Out is bound to system

functions under External > I/O-Config. In this case, output port signals

are related to functions only and no signal state can be manually changed.

RC_ACTIVE It indicates normal RC control state. In this case, signals are normally

controlled. For example, signals can be changed in I/O monitor or using

the Set command.

PLC_ACTIVE It indicates PLC control state. In this case, signals are controlled by PLC

software like InoRobShop.

139

5.4 Communication state

5.4.1 Device Connection

This interface allows you to view the status of the system hardware, as described in the following

table.

Name Status Name Status

EtherNet1

Network cable not connected

EtherNet2

Network cable not connected

Dynamic IP: XX.XX.XX.XX or

Static IP: XX.XX.XX.XX.XX

Static IP: 192.168.23.25

Disabled Disabled

Undefined Undefined

Failed to get information Failed to get information

Controller USB*

Device not connected

Memory card

Device not connected

Connected and mounted successfully Connected and mounted successfully

Connected but failed to mount Connected but failed to mount

Undefined Undefined

Failed to get information Failed to get information

EtherCAT1

Communication normal

IR-link1

Communication normal

Slave disconnected Slave disconnected

Network cable not connected Network cable not connected

A non-EtherCAT device is connected A non-IR-link device is connected

Disabled Disabled

140

Undefined Undefined

Failed to get information Failed to get information

*Controller USB: The USB drive mounted to the controller. The controller USB must be in FAT32,

EXT2 or EXT 3 format to be loaded successfully.

5.4.2 Bus Monitoring

Go to Monitor > Connection > Bus, three types of buses are displayed: ModbusTCP, Ethernet/IP

and EtherCAT.

Modbus

This page shows the connection status of Modbus. When this page is open, the activation status

and connection status are refreshed in real time.

1. The left shows whether ModbusRTU is activated, the right shows whether ModbusTCP is

activated, and the slave port (default 502).

2. ModbusTCP connects up to 16 masters and the IP address and port of the master are displayed.

3. ModbusTCP alarm mechanism is as follows: No alarm if the disconnection is made by the

master actively. If the network cable is removed, only "Eth1 physical network link down" or "Eth2

physical network link down” alarm is reported.

Ethernet/IP

141

This page displays the EIP connection status. When this page is open, the activation status and

connection status are refreshed in real time.

1. It displays the activation status, the slave port number, and the connection status of the EIP

slave. Up to one EIP master can be connected, and the IP address and port number of the master

can be displayed when connected.

EtherCAT

This page shows the connection status of EtherCAT. When this page is open, the activation status

and connection status are refreshed in real time.

1. Displays whether EtherCAT is active.

2. Displays whether EtherCAT master is connected.

3. MC

142

4. You can monitor the connection status of the master when the robot acts as a MC slave. The

monitoring list displays the configurations of 4 default masters when the masters are not

connected. When the masters are connected, the connection status is green. The MC feature

supports the connection of 4 masters.

5.5 Servo State

In the Servo status panel, the servo parameters on the left are refreshed as you switch between

axes. On the right, you can read and write some servo parameters.

About read and write of servo parameters:

Servo parameters are currently available as follows:

Parameter Type Function

H0b33 Read and write Enter the index of servo fault record to be queried

H0b34 Read only Fault code corresponding to the index written by H0b33

H0b51 Read only Sub-fault code corresponding to the index written by H0b33

H0b45 Read only Current sub-fault code of servo

143

The detailed operations are as follows:

1、 When a servo alarm occurs, write H0B33 with the index of servo fault record to be queried.

2、 Use the following parameters to read the fault code for the corresponding index of servo fault

H0b34 Fault code corresponding to the index written by H0b33

H0b51 Sub-fault code corresponding to the index written by H0b33

H0b45 Current sub-fault code of servo

5.6 Log

The log panel in the monitoring interface allows you to view the operation logs and alarm logs, as

shown in the following figure. The operation logs record critical actions the user made on the

teach pendant, and the alarm logs record the errors occurred in the controller. The operation logs

and alarm logs can provide information to support troubleshooting, see Appendix 1

Troubleshooting of Robot Alarms.

Note:

1. You can click to clear the operation logs or alarm logs.

2. The operation log and the alarm log can each contain up to 1000 entries. Only the latest 1000

entries are recorded.

5.7 Version

You can view version information as shown in the following figure.

144

You can see more information in factory mode.

Note:

1. The teach pendant automatically jumps to this interface upon power on when the teach pendant

and controller are inconsistent in version.

2. For the handheld teach pendant, when the version mismatch occurs, the interface will display a

Sync button so that you can upgrade the teach pendant to the same version as the controller. See

7.7 Synchronizing Teach Pendant.

5.8 Current Protection

See 7.10 Current Protection.

6 Process Application

6.1 Tracking Process

6.1.1 Overview

Tracking process is an application for tracking moving objects and planning robot movements

with reference to the moving objects. Conveyor tracking is a typical application in the tracking

process. Conveyor tracking is the process by which objects on the conveyor are detected by visual

or photoelectric sensors so that the robot can accurately grasp the moving objects.

1. Workflow

1) Detection is the process of obtaining the position of an object on a conveyor through visual or

photoelectric sensors, placing the obtained object position information into the conveyor

object queue, and tracking the changes in the object position through encoder feedback.

145

2) Tracking motion is a robot motion that takes the moving object in the queue as the reference

coordinate system. The detection is processed in parallel with the tracking motion, as shown

in the following figure.

Start

Object
detected?

Add to queue

Queue

Object within
grip range?

Remove from
queue

Switch to object
frame

Move relative to
object

Switch to static
frame

Move relative to
static frame

N
N

Y Y

Auto run User program

Conveyor tracking process flow

2. Position description system

The tracking motion takes the object coordinate system as the frame of reference. The object

coordinate system () is a coordinate system that is fixedly connected to the object and moves

with the object. It is a dynamic coordinate system. The object coordinate system describes the

position and orientation of the object on the conveyor, and is the coordinate of the object reference

point in the conveyor coordinate system. The conveyor coordinate system () indicates the

position and orientation of the conveyor in the robot base coordinate system, and is used to

describe the relationship between the conveyor and the robot. It is a static coordinate system. The

vision coordinate system () describes the position conversion relationship between the

camera and the conveyor. The instantaneous position of an object on the conveyor is obtained

through the camera, and the movement of the object on the conveyor is obtained in real time by

the encoder, enabling the robot to track the position of the object in real time. The relationship

between the coordinate systems in the tracking process is as follows.

objO

cnyO

visO

146

visO

BaseO

cnyO

objO
B

cT

c

vT

c

oT

worldO

_obj BaseO

Relationship between the coordinate systems in the tracking process

3. Functional specifications

1. Conveyor type: Linear, circular.

2. Number of conveyors: 4, at most 2 conveyors can be used at the same time.

3. Detection method: Visual or photoelectric sensor, at most one vision device can be used.

4. Tracking motion instructions: MoveL, MoveC, JumpL.

5. Number of work object types: One conveyor supports at most 16 types of work objects.

6. Visual data type: Robot coordinates or pixel coordinates.

7. Visual communication format: Fixed format (see instruction CnvVison in Section 6.1.5)

8. Number of objects to shoot at one time: 0-10.

9. Object queue length: 500.

4. Configuration process

The following parts are required to use the tracking process, as detailed in Section 6.1.2-6.1.5:

1. Hardware configuration

2. Coordinate system setting

3. Parameter setting

4. Tracking instructions

6.1.2 Hardware Configuration

The hardware configuration for the tracking process is shown in the following figure.

Photoelectric sensors and vision systems can be selected according to the specific detection

method used. If visual detection is used, the camera trigger must be hardware triggered.

Hardware configuration for the tracking process

Robot control system
Vision
system

Encoder

Photoelectri
c sensors

Encoder
module

IO
module

IO
module

Ethernet
Interfac

e

DI

DO

147

1. Connect the encoder

Connect the signal and power lines of the pulse encoder to the encoder interface of the robot

controller. See the controller user guide for specific wiring logic. After the physical connection is

completed, rotate the encoder and take the value of the encoder through the following interface.

Observe the changes in the encoder value to determine whether the physical connection is correct.

Read encoder position

2. Connect the photoelectric sensor

The photoelectric sensors output different level signals when triggered by an object, and the robot

controller detects the object through the signal edge. Connect the signal wire of the sensor to the

normal DI interface of the I/O module of the controller. For the wiring requirements, see the

controller user guide. Once the wiring is complete, observe the change of corresponding DI value

on the monitoring interface to determine whether the sensor works normally.

3. Vision

The interaction between vision and the robot consists of DO triggering and Ethernet

communication. The DO triggering requires a signal line from the DO interface of the robot

controller to be connected to the I/O trigger interface of the camera. Once the physical connection

is complete, manually output the DO to see if the camera can be triggered properly.

6.1.3 Coordinate System Setting

The conveyor coordinate system is a user coordinate system for special functions. To set or

calibrate the coordinate system parameters, go to Edit > Crd User. The conveyor coordinate

system describes the position and orientation of the conveyor. The positive x-axis direction

coincides with the direction of conveyor movement. The setting is described below.

1) For linear conveyor, use the 3-point method to set the coordinate system, as show below.

148

Calibrating the conveyor coordinate system using 3-point method

The three points are selected as shown in the following figure. Place a calibration plate or other

calibration reference on the conveyor, and align robot end to the reference point to get point 1,

namely, the origin of the conveyor coordinate system. During the movement, keep the relative

position of the calibration board and the conveyor unchanged and move from P1 to P2, with P1-P2

being the positive X direction. The Z axis is perpendicular to the direction of the conveyor, and a

point P3 in the first quadrant of XY is taken according to the right hand rule.

1P
2P

3P

A B

L

Calibrating the linear conveyor using the 3-point method

If the conveyor is circular, use the rotation method and the calibration interface is shown in the

following figure.

Rotation method

149

2) The rotation method also takes three points, as shown in the figure below. Fix the calibration

reference point on the disk, rotate the reference point to the appropriate position and then take

the first point P1. The direction from the center of rotation to P1 is the positive X direction of

the coordinate system. Rotate the disk counterclockwise, take points P2 and P3 in sequence,

and determine an arc from the three points. The center of the arc is the origin of the

coordinate system.

1P

2P

3P

x

Direction of
rotation

Establishing a circular coordinate system using the rotation method

Note: For accuracy, it is recommended that the three points be positioned as far away from each

other as possible. When there is a tool at the end of robot, it is necessary to first calibrate the tool

coordinate system and activating the corresponding tool coordinate system.

6.1.4 Parameter Setting

The conveyor parameters include basic parameters, encoder calibration, work object height

calibration, boundary parameter settings, and detection parameter settings. According to different

detection methods, the detection parameters are divided into vision parameters or sensor

parameters. To set the conveyor parameters, go to Set > Function > Tracking, as shown below.

Configuring the tracking process

The main interface contains several parts and their functions are described as follows.

Edit: When ticked, you can view or edit the parameters for that conveyor.

Use: When checked, the conveyor can be used in the user program.

Basic Param: Displays basic information of the selected conveyor. These parameters are for

150

display only and cannot be modified.

Grasp Pos Compensation: Finely adjusts the grasping position.

Parameter Set: When clicked, takes you to the parameter editing page.

1. Basic parameter settings

Click the Para Set button to access the parameter setting interface, as shown in the following

figure. The setting is wizard-based, click Back/Next in the lower right corner to switch the

interfaces. The parameters are temporarily in effect when the interface is switched, but are not

permanently saved to the controller and will be lost after a power failure. If you want to save the

parameters permanently, click the Save or OK button.

Basic setting interface

You can set the following parameters:

1. Conveyor Type: Straight or circular.

2. Encoder Ch: Selects the signal input channel of the conveyor encoder on the robot controller.

3. Ass-User: Selects the user coordinate system number obtained in 6.3.3 to associate the user

coordinate system with the conveyor.

4. Detect Type: Sensor or vision.

Note: Since the user coordinate system 0 is system-fixed, coincident with the base coordinate

system and cannot be modified, select 1-15 when calibrating the conveyor coordinate system.

2. Encoder calibration

The second interface is the encoder calibration interface, which completes the setting of the

encoder resolution and direction.

Encoder resolution is the pulse increment of the encoder as the conveyor moves by a unit length

(mm or rad).

Encoder direction is the increase or decrease in encoder pulse value as the conveyor moves

forward.

151

The calculation process is as follows:

1) Place a mark point P1 on the conveyor, align the robot with P1, click Get Pos1.

2) Keep the position of the mark point relative to the conveyor unchanged, move the conveyor to

reach P2 position, and align the robot with P2, and click Get Pos2.

3) Click Calculate to complete the automatic calculation of resolution and direction.

Encoder calibration method

3. Work object height calibration

The third interface is the work object height calibration interface, as shown in the figure below.

The height of the work load cannot be detected by either the vision system or the sensor, and the

height of each work object type needs to be specified by the parameter setting. The work object

height value is the Z coordinate value of the work object reference point (the origin of the object

coordinate system) in the conveyor coordinate system.

152

The calibration method is as follows:

1) Select the work object number in the list.

2) Move the end of the robot to the work object reference point and click Get CurHeight to

complete the automatic height reading. If a tool is mounted at the end of the robot, you need to

enable the corresponding tool coordinate system.

4. Boundary parameter setting

The fourth interface is the boundary parameter setup interface, which is shown in the following

figures A (linear conveyor) and B (circular conveyor).

Upstream Limit: Refers to the highest boundary that the robot can reach, and also represents the

upper boundary of the object search area. When the object exceeds this boundary, it can be queried

by the conveyor inquiry instruction. It is expressed as the x-coordinate value in the conveyor

coordinate system. Ensure that the upper boundary is within the right-angle motion range of the

robot and away from singular positions.

Downstream Limit: Refers to the lowest boundary that the robot can reach. When the distance

between the robot and the boundary is less than Stop Smoothing Dis, an alarm will be triggered.

Latest Accept Pos: Refers to the lower boundary of the object search area. When an object

exceeds this boundary and has not yet been picked up, it will no longer be picked up and will be

discarded from the queue. Dynamic gripping takes a certain amount of time. Objects that are close

to the downstream limit may exceed the downstream limit before the gripping process is complete,

causing an alarm. Set the Latest Accept Pos appropriately to prevent this situation. When setting

the Upstream Limit, make sure the time for the object to move from the Upstream Limit to the

Downstream Limit should be greater than the time taken to grip the object.

Stop Smoothing Dis: Refers to the distance the object smooths to stop when it approaches the

Downstream Limit. When the distance between the object and the Downstream Limit is less

than Stop Smoothing Dis, the object smooths to stop.

153

A: Linear conveyor boundary parameters

B: Circular conveyor boundary parameters

The Upstream Limit, Downstream Limit, and Latest Accept Pos are three lines perpendicular

to the x-axis direction of the conveyor coordinate system, expressed in x-coordinates. These three

parameters can be entered directly, or can be obtained by moving the robot to the appropriate

positions and clicking Get CurPos. The Stop Smoothing Dis is normally set to 5˚ or 5 mm.

5. Detection parameter setting - sensor parameters

The fifth interface is the detection parameter setting interface. There is two types of interfaces

depending on the detection method used: sensor, or vision.

1. When sensor detection is used, the parameters and settings are as follows.

154

C: Sensor parameter setting

Sensor detection parameters include sensor settings and sensor position calibration.

3) The sensor settings are to set the basic parameters of the sensor, including the sensor DI port,

signal type, workpiece ID, and rejection distance.

Sensor DI Port: The input port of the photoelectric sensor on the IRLINK module.

Signal Type: The edge of the signal output when the sensor is triggered by the work object.

Workpiece ID: Up to 16 types of work objects are supported on a conveyor. The type of

work object cannot be recognized when using the sensor and therefore needs to be specified.

Reject Dis: After a valid signal is detected, if a signal change is detected within a subsequent

distance, it is considered that the signal is triggered by the same work object and is automatically

rejected as an invalid signal. This distance is called the rejection distance.

After setting the above parameters, click Send before performing the sensor position

calibration.

4) The purpose of the sensor position calibration is to obtain the pose of the object reference

point in the conveyor coordinate system at the moment when the sensor is triggered, which is

the detection position on the left side of Figure C. The detailed operations are as follows:

1） Adjust the conveyor speed to the normal working speed, place the object upstream

of the sensor, and the object moves with the conveyor. When passing through the

sensor, the sensor is triggered. Stop the conveyor after the object moves to the

robot's range of motion, ensuring that the sensor is only triggered once during this

process.

2） Align the end tool of the robot with the object reference point, click Get TeachPos,

and the pose of the robot in the conveyor coordinate system is the pose in the object

coordinate system.

3） Click Calculate DetectPos and the controller automatically calculates the pose of

the object at the time the sensor is triggered.

Note:

1) Make sure that the workpiece passes through the sensor at the same speed as normal

operation during calibration.

2) Do not use hands or other objects to trigger the sensor during calibration.

155

3) If the robot has a tool at the end, select the corresponding tool number when getting the

teach position.

When the settings are complete, click OK to finish.

2. If you use vision detection, you need to set vision parameters, including basic parameters and

vision calibration, as shown in the following figure.

Camera basic parameters

Trigg DO: Input port of the I/O signal that triggers the camera to take a picture on the IRLINK

module.

Data Type: The type of change in the output signal of the I/O module when the camera is

triggered: rising or falling edge, which should be consistent with the actual situation of the

camera.

CameraTiggDis: The visual photography of the conveyor is controlled by the movement distance

of the conveyor. Every time the conveyor moves by a CameraTiggDis, the controller sends a DO

signal to the camera.

The principle of setting this distance is to ensure that every object identification on the conveyor

can be photographed completely, ensuring no missed shots. If the set distance is equal to the width

of camera's field of view , and the camera's previous and subsequent shots are seamless, so that

each object on the conveyor can be captured. If an object happens to be located at the junction of

the two shots, then half of the object will be captured in each shot, and the object cannot be

identified. As shown in the figure below, the work object was located at the dashed line position

during the first photo taking, and the work object moved to the solid line position on the right

during the second photo taking. Both previous and subsequent photos did not recognize the work

object A.

Camera FOV width visionL

A
B

A
B

To avoid this situation, the previous and subsequent shots should overlap slightly, with an overlap

156

width greater than the maximum width of the object identification, achieving at least one complete

photo, as shown in the following figure.

Trigger interval

Camera FOV width

trigL

visionL

maxD

The visual system must complete image recognition within a photography cycle, which is equal to

CameraTiggDis/conveyor speed. Setting CameraTiggDis too small can lead to a shorter

photography cycle, requiring faster visual processing speed. Therefore, CameraTiggDis should be

as large as possible without missing shots. In comprehensive consideration, CameraTiggDis can

be set according to the following formula, where is CameraTiggDis, is the width

of field of view, is the maximum width of the object detection, and is the setting

margin.

max

10

trig vision vision

vision

L L D

mm





  




Reject Distance: According to the above CameraTiggDis setting principle, there is overlap

between the previous and subsequent photos, which may cause the same object to be repeatedly

recognized in the two photos. The distance between the work objects at the time of the two

photographs is called Reject Distance.

The controller will compare the positions of the two photographed objects internally. If the

distance between the two objects is less than the distance determined by Reject Distance, it is

considered a duplicate and the object obtained from the subsequent shot is removed. The principle

for setting the Reject Distance is to correctly identify the same object that is overlapped and the

two objects that are normally close. As shown in the following figure, two objects can be

considered as two different objects when the distance is greater than , otherwise as the

same object. Therefore, set the Reject Distance as follows:

min min2removeL R D 

Camera FOV width visionL

min2R

Data Type: Pixel coordinates or robot coordinates. Select "Pixels coord" if the data the vision

system sends to the robot is a pixel, otherwise select "Robot coord". (When robot coordinates are

selected, the coordinate conversion takes place in the vision system, and the robot controller does

trigL visionL

maxD vision

min2R

157

not require vision calibration. When performing vision calibration in the vision software, you can

still get the coordinates of 9 points of the robot.)

VisionCoordSys: If the data sent by the vision system to the controller is pixel coordinates, vision

calibration and coordinate transformation need to be carried out in the controller, and the vision

calibration results are stored in the vision coordinates table. This parameter specifies the vision

coordinate system number.

If the position information sent by the vision system to the robot is pixel coordinates, vision

calibration needs to be performed in the robot controller. After completing the basic parameter

settings mentioned above, click Next to enter the following interface:

Place the calibration board on the conveyor below the camera. Take photos at the vision end to

obtain the pixel coordinates of the 9 points on the calibration board, and fill the coordinates in the

corresponding fields. Click GetCurPos to read the conveyor position information at the time of

the photo.

After you have finished entering the pixel coordinates and reading the photo position, click Next

to enter the following interface:

Move the conveyor with the relative position of the calibration board and the conveyor unchanged,

158

and stop the conveyor after the calibration board enters the robot's motion range. Move the end of

the robot in order of the pixel points and align the robot with these 9 points. Click GetCurPo to

obtain the coordinates of the 9 points. Click GetCurPo to read the position of the conveyor at this

time. After reading the current position of the conveyor and the coordinates of the 9 points, click

Offset to calculate the coordinates of the 9 points at the photo position. Click Calibrate/Send to

calculate the calibration results and save them to the vision coordinate system.

Click OK to finish all settings and save them.

Note: 1. In the process of vision calibration, it is necessary to activate the corresponding tools.

Ensure that you activate the correct tools.

2. If Data Type is set to "Robot coord", the robot coordinates entered when performing vision

calibration are based on the conveyor coordinate system and have been offset.

6.1.5 Tracking Instructions

1. CnvVison

Function: Opens/closes the conveyor vision port. After the conveyor vision port is opened, the

controller automatically stores visually detected objects in a queue, without the need for users to

program and process the vision coordinates.

Format: CnvVision(Conveyor[***], ON/OFF, client port number);

Parameter: Conveyor[***] conveyor number, *** range 0-3

Description: Once the conveyor vision is turned on, the vision data needs to be sent to the robot

controller in a fixed format:

With objects: TA, X1, Y1, A1 T1, TA, X2, Y2, A2, T2…; (max. 10)

Without objects: NG;

Note that the angle unit is degrees and do not miss the semicolon. One photo corresponds to one

packet, and it is not allowed to be sent in multiple times.

2. GetCnvObject

Function: Queries whether there is an object of specified type in the pickup area from the

conveyor object queue. If there are any, remove them from the queue. If there are no objects, jump

to the next line of instruction.

Format: GetCnvObject(CnvID, ObjID), Goto L[***];

Parameter Meaning

CnvID Conveyor number. The range is 0 to 3.

ObjID Object type number, 0-15

L[***] Marks the program line to which the program shall return when the target

information is not received within time limit. If the target information is

successfully received, the program proceeds to the next program line.

Description:

The objects detected by visual or photoelectric sensors are automatically placed in the storage

queue of the robot controller, and the controller tracks the position of these objects in real-time.

Once the objects enter the pickup area, they can be queried by through GetCnvObject instruction.

If there are more than one object in the pickup area, take the most downstream one.

If an object is queried, the object is removed from the storage queue as the target object, and the

next line of instruction is executed (without executing the Goto L[***] instruction in the

159

statement). If the object is not queried, the Goto L[***] instruction is executed, i.e., it jumps to

L[***].

Example:

START;

L[0]:

Opens the port. External device as server, Address 10.44.53.13, port number 1025;

##Local controller as client, port number 1026.

Open Socket ("10.44.53.13", 1025, 1026, B0);

If B0==0

If B0==0

EndIf;

CnvVision (Conveyor[1], ON, 1026);

P[30]=(0,0,10,0,0,0),(0,0,0,0),(7,0,0); ##Defines P[30] as a point in the object coordinate

system with coordinates of (0,0,0,10,0,0,0)

L[1]:

Movj P[0], V[30], Z[0]; ##Moves to wait position

L[2]:

GetCnvObject(1,0's), Goto L[2]; ##Queries queue for type 0 object on conveyor #1

RefSys Conveyor(1,Tool[2]); ##Switches the motion reference coordinate system to the

object just queried

Movl P[30], V[100], Z[1], Tool[2]; ## Uses tool #2 to move to the P30 point in the object

coordinate system

Set Out[1],ON; ##Switches on to absorb object

RefSys Base; ##Switches motion reference system to robot

Jump P[1], V[100], Z[0], LH[10], MH[-750], RH[10]; ##Moves the object to P[1]

Set Out[1], OFF, T[0]; ##Places the object

Goto L[1];

CnvVision (Conveyor[1], OFF, 1026);

Close Socket, 1026;

END;

3. CopyCnvObject

Function: Queries whether there is an object of specified type in the pickup area from the

conveyor object queue. If there are any, copy them from the queue. If there are no objects, jump to

the next line of instruction.

Format: Refer to GetCnvObject

Description:

This instruction is basically the same as GetCnvObject in format, syntax, and function, except that

CopyCnvObject copies the object from the queue and the object can still be found the next time,

while GetCnvObject removes the object from the queue and the removed object cannot be found

the next time.

4. RefSys

Function: Switches the motion reference coordinate system.

Format 1: RefSysBase;

Format 2: RefSysConveyor(***, Tool[***]);

160

Format 3: RefSysWorkBench(***, Tool[***]);

Format Description

RefSys Base
Switches the motion reference system to base reference

system

RefSys Conveyor(***,Tool[***]);

Switches the motion reference system to the coordinate

system of the object on the conveyor. Since the object

coordinate system is a dynamic coordinate system, the

tool end will be synchronized with the object on the

conveyor when this instruction is executed.

*** Conveyor number, range 0 to 3;

Tool[***], the tool number, which indicates that the

specified tool end is synchronized with the object on the

conveyor.

RefSys WorkBench(***, Tool[***]);

Switches the motion reference system to the table

coordinate system. Since the table is a dynamic

coordinate system, the tool end is synchronized with the

table when this instruction is executed.

*** Table number, range 0 to 3;

Tool[***], the tool number, which indicates that the tool

end is synchronized with the table.

Description: When the motion reference system is switched to a dynamic coordinate system such

as a conveyor, table, etc., the description of trajectory and points is relative to the dynamic

coordinate system. In the case of a conveyor, the movement of the robot is relative to the object

coordinate system after the RefSys Conveyor instruction is performed. When there is no motion

instruction, the robot and the object remain relatively stationary (moving synchronously with the

object). When there is a motion instruction, the trajectory is in the object coordinate system, and

the target point is in the object coordinate system (type 7).

Note: For the conveyor tracking process, the PE parameter must not be included in the motion

instruction, and the VelSet instruction is not effective. During the tracking process, instructions

such as WaitInPos, Print, etc. that require the robot to be stationary to execute cannot be used.

START;

P[30]=(0,0,10,0,0,0),(0,0,0,0),(7,0,0); ##Defines P[30] as a point in the object coordinate

system with coordinates of (0,0,0,10,0,0,0)

Movj P[0], V[30], Z[0]; ##Moves to wait position

L[2]:

GetCnvObject(1,0's), Goto L[2]; ##Queries queue for type 0 object on conveyor #1

RefSys Conveyor(1,Tool[2]); ##Switches the motion reference coordinate system to the

object just queried

Movl P[30], V[100], Z[1], Tool[2]; ##Moves to P30 in the object coordinate system, with the

movement trajectory being straight

161

RefSys Base; ##Switches the motion reference frame to robot

END;

5. Notes

1. After executing RefSys Conveyor, the robot will continue to synchronize with the conveyor

until RefSys Base is executed. If the RefSys Base is not executed in time, the robot will follow

the conveyor until it goes out of bounds. Therefore, logically, it is necessary to ensure that

RefSys Conveyor and RefSys Base exist in pairs. If using Goto, subroutines, etc., it is necessary

to return in time to ensure that RefSys Base can be executed. The duration of the program

segment between two instructions cannot be greater than the time when the conveyor moves to

the boundary.

2. The coordinate system switching instructions shall be used in pairs. At the end of a dynamic

tracking, switch to the base coordinate system first. It is not allowed to switch directly between

different dynamic reference systems.

3. The motion in the tracking mode is Cartesian trajectory, and the use of joint motion is

prohibited. After entering the tracking mode, the robot remains in motion and the instruction to

stop the robot will not work.

Prohibited instructions (If used, an error occurs):

(1) Only Movl/Movc/JumpL instructions are allowed and other motion instructions are

prohibited;

(2) The use of the Until and PE parameters is prohibited in motion instructions;

(3) Non-motion instructions other than Delay, Set Out, Print are prohibited.

4. In the tracking process, if the robot speed and conveyor speed are large, it is normal to alarm

that the joint speed planning is abnormal. In this case, the robot speed or conveyor speed should

be reduced.

5. When the coordinate system number in the position variable is 7, only Offset instruction can

be used and only offset in X, Y and Z directions can be performed.

6. After version 18, the Z axis in the initial coordinate values of the dynamic point is consistent

with the Z direction of the object coordinate system. It is necessary to assign a value to the Z

axis according to the actual situation, otherwise a limit alarm will be triggered. (Change the

orientation values of the dynamic point).

7. RefSys Base cannot be directly followed by motion instructions with PE. If necessary, use

motion instructions with fixed points first, and then use motion instructions with PE. For

example,

RefSys Base;

Movj P[0],V[100],Z[0];

Movl Offset (PE, PR0), V[100], Z[0];

8. The use of the GetCnvObject instruction in multitasking can affect the gripping timing in the

main task, and may result in alarms, such as joint overspeed, exceeding the working limit, etc.

9. During the process of the robot tracking the conveyor (RefSys Conveyor), if the user

manually stops the robot or the robot stops due to alarms, directly restarting the robot cannot

complete the tracking movement, and you need to return to the program start line and run the

program again.

10. The maximum supported speed of linear conveyor is 500 mm/s, and the maximum

162

supported speed of circular conveyor is 30 °/s.

6.1.6 Application Cases

6.1.6.1 Dynamic Pick and Place

1) Schematic diagram of points

In the figure below, P[10] is a point on an object, P[1] is a waiting point, P[2] is the placing point.

A dynamic object coordinate system (type 7) is used. The robot waits from the P[1] point. An

object flows through the upstream limit and is queried by GetCnvObjet. The motion reference

system switches to the object coordinate system, and the robot moves to the P[10] point in the

object coordinate system to pick up the object. The object is grasped and lift 10 mm off the

conveyor surface. Then the object coordinate system is switched to the static coordinate system

and moved to the P[2] point and placed.

2) Program

START ##Program start flag

B0=0; ##B0 variable initialization

P[10]=(0,0,0,0,0,0),(0,0,0),(7,0,2); ##Defines the point in the object coordinate system: object

origin

P[11]=(0,0,0,10,0,0,0),(0,0,0,0,0),(7,0,2); ##Defines the point in the object coordinate system:

10mm above the object

While B0<> 1

 Open Socket (" 192.168.24.55 ", 1025, 1026, B0); ##Establishes a connection to the vision

coordinate system

EndWhile;

ConVision(Converyor[0],ON,1026); ##Turns on conveyor vision

L[0]; ##Identifier L[0]

Jump P[1], V[100], Z[0], LH[10], MH[-50], RH[10]; ##Robot wait point, which is normally set

near the upstream limit

L[1]; ##Program jump identifier L[1]

GetCnvObjet (0,1), Goto L[1]; ##Queries object. If there is an object, continue to execute the

following instructions; otherwise, jump to L[1].

ResSys Converyor[0]; ##Switches motion reference system to the coordinate system of the

P[2]

Conveyor

Object P[10]

Direction of conveyor movement

P[1]

163

object on the conveyor

JumpL P[10], V[100], Z[0], LH[0], MH[10], RH[0]; .##Moves to P[10] in the object coordinate

system

Set Out[8], ON; ##Switches on to absorb object

Movl P[11], V[30], Z[0]; ##Lifts the object 10mm off the conveyor surface

RefSys Base ##Unsynchronized from the conveyor and the motion reference system switches to

the robot

Jump P[2], V[100], Z[0], LH[0], MH[10], RH[0]; ##Runs to the unloading point P[2]

Set Out[8], OFF; ##Turns off switch and places the object

Goto L[0]; ##Program loop

END ##Program end flag

6.1.6.2 Dynamic Sorting

1） Schematic diagram of points

When there are two or more objects on the conveyor, the vision system recognizes the attributes of

the objects and sends them to the robot, which can sort the different objects according to the object

attributes in the sent data.

2) Program

START;

P[11] =(0,0,0,0,0,0),(0,0,0,0),(7,0,0);

L[0]:

Jump P[1],V[100],Z[0],Tool[0],LH[0],MH[-800],RH[0]; ##Waiting position

L[1]:

GetCnvObject(1,1),Goto L[2]; ##Queries for object #1

RefSys Conveyor(1,Tool[0]);

Jump P[11],V[100],Z[0],Tool[0],LH[0],MH[-800],RH[0]; ##Picks up object #1

RefSys Base;

Jump P[2], V[100], Z[0], Tool[0], LH[0], MH[-800], RH[0]; ##Places the object in unload

zone #1

L[2]:

GetCnvObject(1,2),Goto L[1]; ##Queries for object #2

RefSys Conveyor(1,Tool[0]);

164

Jump P[11],V[100],Z[0],Tool[0],LH[0],MH[-800],RH[0]; ##Picks up object #2

RefSys Base;

Jump P[3], V[100], Z[0], Tool[0], LH[0], MH[-800], RH[0]; ##Places the object in unload

zone #2

Goto L[0];

END;

Note:

1. Dynamic sorting supports 16 different types of objects, and the data of up to 10 objects can be

sent in visual photography.

2. The target objects for sorting need to be of similar size.

6.2 Vision Calibration

6.2.1 Overview

Vision calibration is a prerequisite for the use of vision functions in robot systems. Calibration

is to obtain the relative position relationship between the camera and the robot, so that the

pixel coordinates can be transferred to the robot coordinates in other subsequent operations.

Inovance Technology offers SCARA robots and 6-axis robots with the following differences

in the operational steps of the vision calibration function.

Calibration

Process
SCARA Robots 6-Axis Robots

Calibrate the end

fixture
- Calibrate the end fixture

Calibrate the user

coordinate system
-

Calibrating the user coordinate

system (Using the calibrated end

fixture)

Calibration

parameters

setting

Go to the vision calibration interface

and select parameters such as

calibration method, camera

installation mode, etc.

Go to the vision calibration interface

and select parameters such as

calibration method, camera

installation mode, etc.

Select the

reference point
Select two reference points Select three reference points

9-point teach

calibration
Perform 9-point teach calibration Perform 9-point teach calibration

Completed Completed Completed

The visual calibration main process is shown in the following figure:

165

6.2.2 Vision Calibration of SCARA Robots

The vision calibration of SCARA robots includes eye-to-hand overlook calibration,

eye-to-hand look-up calibration, eye-on-hand J2 calibration, and eye-on-hand J4 calibration.

All controller versions support vision calibration of SCARA robots.

Due to structural limitations, SCARA robots generally operate in the user plane parallel to the

base plane, and the calibration process does not need to be associated with the user coordinate

system, and only two reference points need to be selected in the reference point teaching. The

vision calibration process of SCARA robots is shown in Figure 2-1:

166

Figure 2-1 Vision calibration process of SCARA robots

6.2.3 Vision Calibration of 6-Axis Robots

The vision calibration of 6-axis robots includes eye-to-hand overlook calibration, eye-to-hand

look-up calibration, eye-on-hand J5 calibration, and eye-on-hand J6 calibration. The

controller after version 17 can support visual calibration of the 6-axis robots .

A 6-axis robot can not only operate on a user plane parallel to the base plane, like a SCARA

robot, but also on a user plane that is not parallel to the base plane (but the Z direction must

point upwards). During its calibration process, it is necessary to select the associated user

coordinate system. When selecting the associated user coordinate system, it is necessary to

confirm that both the tool and the user coordinate systems have been calibrated. In the

reference point teaching, it is necessary to select three reference points to determine the

calibration tool (Note: when calibrating the reference points, try to make the camera and

calibration board in a relatively parallel state, and the orientation between every two reference

points needs to change by more than 20°). The vision calibration process of 6-axis robots is

shown in Figure 2-2:

167

Figure 2-2 Vision calibration process of 6-axis robots

NOTE: During the calibration process, attention needs to be paid to the introduction of vision

calibration errors. Factors affecting camera calibration accuracy mainly include human

calibration accuracy, fixture accuracy, visual inspection accuracy, absolute accuracy of the

manipulator, and calibration algorithm accuracy.

6.2.3.1 Operation Procedure

Depending on how the camera is mounted, different calibration methods are used, see

sections 6.4.4-6.4.9.

Eye-to-hand overlook calibration 6.4.4 Eye-to-Hand Overlook Calibration

Eye-to-hand look-up calibration 6.4.5 Eye-to-Hand Look-up Calibration

Eye-on-hand J2 calibration 6.4.6 Eye-on-hand J2 calibration

Eye-on-hand J4 calibration 6.4.7 Eye-on-Hand J4 Calibration

Eye-on-hand J5 calibration 6.4.8 Eye-on-hand J5 calibration

Eye-on-hand J6 calibration 6.4.9 Eye-on-hand J6 calibration

6.2.3.2 Results Validation

Calibration results obtained by various means of calibration can be verified by programming

to see if the calibration results meet the requirements. See 6.4.10 Calibration Results

Verification.

168

6.2.4 Eye-to-Hand Overlook Calibration

The camera is mounted above the calibration board, looking down, as shown in the following

figure:

6.2.4.1 Mounting Condition

As shown in the figure, there is a nine grid calibration board directly below the camera, which

contains 9 marker points that need to be calibrated by the robot. Keep the camera, robot, and

calibration board on the same horizontal plane. Make sure that the 9 marker points on the

calibration board are clearly imaged in the lens. Install fixtures at the end of the robot, which

can be either tip fixtures or fixtures that can be recognized by the vision system.

6.2.4.2 Calibration Procedure

Step 1: Install the camera, position the robot, place and adjust the calibration board, adjust the

vision software, and create calibration templates, etc.

Step 2: Select the vision coordinate system to calibrate, as shown in the following figure.

Step 3: Click the Calibrate button to enter the camera parameters setting interface.

Communication parameter configuration: Sets the vision system information, including the

camera IP, port number, and camera name (optional). When you have finished setting up,

click Connect to establish communication.

169

Camera trigger mode: I/O trigger, Ethernet trigger.

When you select I/O trigger is selected, you need to set the following parameters:

When you select Ethernet trigger, you need to set the string that triggers the camera to take a

picture:

Reception data format: Includes head, separator, and tail.

If you do not need to communicate with the vision system to get the camera coordinates,

select Next.

Note:

1. When the camera trigger mode is set to Ethernet trigger, click Comm-Test. If the camera

has sent data, but the data is not received, check the network cables and check the connection

between the camera and the robot controller.

6.2.4.3 Camera Communication Test

It is to test communication with the vision software. The robot controller triggers a signal (I/O

signal or a string sent) to the vision side, the string sent by the vision side is displayed in the

data reception area. Check if the sent data format is consistent with the specified format.

Step 4: Go to the camera installation selection interface, select "0-eye to hand overlk” and

click Next.

Step 5: Select the calibration method, and click Next.

170

There are three methods of calibration.

Manual calibration: You need to manually teach the robot to calibrate the 9 marker points in

the calibration board and obtain the corresponding camera coordinates.

Semi-automatic calibration: Set 3 marker points on the pallet and generate 9 marker points by

calibrating the pallet. The robot automatically runs to 9 marker points and obtains the

corresponding camera coordinates.

Automatic calibration: 9 marker points are automatically generated by teaching the center of

the field of view and setting the distance between 9 points, the robot automatically runs to 9

marker points and obtains the corresponding camera coordinates.

Step 6: Go to the reference point acquisition interface. Figure 1 shows the acquisition of reference

points for the SCARA robot, Figure 2 shows the acquisition of reference points for the 6-axis

robot reference point. Click Next when finished.

Figure 1

171

Figure 2

Note: Two reference points are required for the SCARA robot and three for the 6-axis robot.

Set the reference point according to the calibration method selected.

If the end calibration fixture of the robot is a tip fixture, teach the robot to align the tip of the

fixture with the marker point in the center of the calibration board. For the SCARA robot,

teach it with two reference points. First, obtain the position of the robot as the reference point

1, and then adjust the robot's orientation by rotating it at a certain angle and re-aligning it with

the marker point, so that the position of the robot is obtained as the reference point 2.

Note: Do not teach the robot with two points by changing the arm type.

Unlike the SCARA robots, you need to teach the 6-axis robots with three reference points (Unlike

the SCARA robots, these three points are obtained according to the method of calibrating the tip

tool of the 6-axis robot. For the calibration method of the tip tool, see 4.2 Coordinate System

Settings, and the steps are the same as those for the SCARA robots.)

Note:

1. When calibrating the reference points, try to keep the camera and calibration board in a

relatively parallel state, and the pose angle interval between every two reference points should be

as large as possible.

2. In vision calibration of the 6-axis robots, you need to select the associated user coordinate

system, which is obtained from the calibration of the robot with end calibration fixtures.

3. Before vision calibration, calibrate the tool first, and then calibrate the user coordinate system.

172

If the end calibration fixture of the robot is a visually recognizable template tool, you can

adjust the orientation of the robot and rotate the calibration fixture by a certain angle to obtain

other reference points.

Step 7: Go to the 9-point teaching interface, click Next when you are finished.

Manual calibration: Since all the pixel coordinates are photographed at one time, the

individual pixel coordinates cannot be acquired by communication, but only by manual input.

You can uncheck Get CameraCoord and then manually enter the pixel coordinates. Adjust

the robot position, get the 9 positions of the robot on the calibration board through manual

calibration and enter the corresponding 9 pixel coordinates.

173

Semi-automatic calibration: Get three positions P[1], P[2], P[3] in the field of view of camera,

click One-key Calbrt. The robot automatically moves to the 9 corresponding positions in the

field of view map, saves the robot coordinates and the corresponding pixel coordinates until

the motion is completed.

Automatic calibration: Get the position P[0] of the robot in the field of view of camera, set the

Space appropriately so that the final nine points are all within the field of view of the camera,

click One-key Calbrt, and the robot will automatically run to the nine points, save the robot

coordinates and corresponding pixel coordinates until the motion is completed.

174

Step 8: Go to the teaching point list and check if each of the position coordinates and pixels of

the robot is normal. You can also double-click the points in the list to modify the point data

and click Next.

Step 9: The system calculates and generates a vision coordinate system calibration matrix and

calibration result parameters as shown in the following figure.

The parameters include average error in the X direction, average error in the Y direction,

maximum error in the X direction, maximum error in the Y direction, unit pixel size in the X

direction, unit pixel size in the Y direction, offset of calibration tool in X direction, offset of

calibration tool in Y direction, and other parameters.

The offset of calibration tool in X direction and offset of calibration tool in Y direction can be

used as tool parameters without rotation direction for the calibration tool.

Step 10: Click OK to complete the vision calibration.

6.2.5 Eye-to-Hand Look-up Calibration

The camera is mounted below the robot, looking up, as shown in the following figure.

175

6.2.5.1 Mounting Condition

As shown in the figure, the camera is installed directly below the robot, looking upwards.

Keep the camera and robot on the same level. Install fixtures at the end of the robot as

visually recognizable fixtures. Adjust the camera focus and the height of the robot to ensure

that the marked points on the fixture are clearly identified in the field of view.

6.2.5.2 Calibration Procedure

Step 1-5: Same as steps 1-5 in 6.4.4 Eye-to-Hand Overlook Calibration. Complete setting of

basic camera parameters, camera mounting mode, and calibration mode.

Step 6: For SCARA robots, move the marker point on the fixture to the center of the field of

view, as shown in the above figure, to obtain reference point 1. Adjust the orientation of the

robot, rotate the fixture and then move the marker point to the center of the field of view to

get reference point 2. For a 6-axis robot, it is necessary to obtain three reference points (Note:

When calibrating the reference points, try to make the camera and calibration board relatively

parallel, and the orientation between every two reference points needs to change by more than

20°.), and select the user coordinate system associated with the calibration table.

Note: Make sure that the plane where the reference points are selected is consistent with the

user coordinate system associated with the calibration when calibrating the 6-axis robots.

176

Step 7: Complete the 9-point calibration as in Step 7 of 6.4.4 Eye-to-Hand Overlook

Calibration. The point selection method in manual calibration is consistent with step 6.

Manipulate the robot, move the marker points on fixture to obtain 9 points evenly distributed

in the field of view. Also, obtain the corresponding vision coordinates, which can be obtained

through manual input or automatic acquisition.

Step 8-10: Same as Step 8-10 in 6.4.4 Eye-to-Hand Overlook Calibration.

6.2.6 Eye-on-Hand J2 Calibration

The camera is mounted on the J2 axis, looking downwards, as shown in the following figure.

6.2.6.1 Mounting Condition

The camera is mounted on the J2 axis. Keep the camera plane parallel to the horizontal plane

without calibration fixtures, as shown in the following figure. The black marker point in the

figure represents the marker point on the calibration board, the red lines represent the grid

lines in the camera's field of view, and the intersection of the grid lines is the required marker

point.

177

6.2.6.2 Calibration Procedure

Step 1-5: Same as steps 1-5 in 6.4.4 Eye-to-Hand Overlook Calibration. Complete setting of

basic camera parameters, camera mounting mode, and calibration mode.

6. Move the robot and adjust the camera pose to align with the center marker point to obtain two

different points as reference points.

Note:

1) If you use the camera field of view center to calibrate the reference point, select Use the

center of vision to calibrate. The tool parameters displayed after calibration represent the

deviation of the camera field of view center from the end of the J2 axis.

2) If you use the robot's end tool to calibrate the reference point, select Use the tool to

calibrate. The tool parameters displayed after calibration are those of the tool installed at the

end of the robot.

3) If you choose to use the camera as a tool for manual calibration, then do not use the end

tool.

7. Click Next to go to the 9-point calibration interface.

7-1. Manual calibration: Move the robot, align the nine marker points in the field of

view with the marker points on the calibration board to obtain the robot coordinates and

pixel coordinates respectively. The camera coordinates can be automatically obtained or

178

entered manually.

7-2. semi-automatic calibration: Move robot, align the P[0], P[1], P[2] points in the field

of view with the marked points on the calibration board, as shown in the following figure.

Click One-key Calbrt to complete the 9-point calibration.

Note: The robot calculates the 9 points on the pallet based on the end of the robot, while the

camera is installed on the J2 axis of the robot. Therefore, if three reference points are

calibrated according to the grid in the field of view, the actual operation of the robot may not

be based on the 9 grid points in the camera's field of view, but may be a parallelogram, which

may exceed the field of view. Therefore, when calibrating the three reference points, please

try to calibrate them in the middle of the field of view.

7-3. Automatic calibration: Move the robot, align the center of the field of view to the

marker point on the calibration board, enter the length of the field of view grid

corresponding to the length of the robot coordinate system (roughly enough to ensure that

the 9 automatically generated points do not exceed the field of view).

 Click One-key Calbrt to complete the 9-point calibration.

Step 8-10: Same as Step 8-10 in 6.4.4 Eye-to-Hand Overlook Calibration.

6.2.7 Eye-on-Hand J4 Calibration

The camera is mounted on the J4 axis, looking downwards, as shown in the following figure.

179

6.2.7.1 Mounting Condition

The camera is mounted on the J4 axis. Keep the camera plane parallel to the horizontal plane

without calibration fixtures, as shown in the following figure. The black marker point in the

figure represents the marker point on the calibration board, the red lines represent the grid

lines in the camera's field of view, and the intersection of the grid lines is the required marker

point.

6.2.7.2 Calibration Procedure

Same as the calibration steps in 6.4.6 Eye-on-Hand J2 Calibration.

6.2.8 Eye-on-Hand J5 Calibration

The camera is mounted on the J5 axis, looking downwards, as shown in the following figure.

180

6.2.8.1 Mounting Condition

The camera is mounted on the J5 axis. Keep the camera plane parallel to the horizontal plane

without calibration fixtures, as shown in the following figure. The black marker point in the

figure represents the marker point on the calibration board, the red lines represent the grid

lines in the camera's field of view, and the intersection of the grid lines is the required marker

point.

6.2.8.2 Calibration Procedure

Step 1-5: Same as steps 1-5 in 6.4.4 Eye-to-Hand Overlook Calibration. Complete setting of

basic camera parameters, camera mounting mode, and calibration mode.

6. Move the robot and adjust the camera pose to align with the center marker point to obtain

three different points as reference points, and select the associated user coordinate system. For

the selection of reference points and user coordinate system, see 6.4.4 Eye-to-Hand Overlook

Calibration.

7. Click Next to go to the 9-point calibration interface.

7-1. Manual calibration: Move the robot, align the nine marker points in the field of view with

the marker points on the calibration board to obtain the robot coordinates and pixel

181

coordinates respectively. The camera coordinates can be automatically obtained or entered

manually.

7-2. semi-automatic calibration: Move robot, align the P[0], P[1], P[2] points in the field of

view with the marked points on the calibration board, as shown in the following figure.

Click One-key Calbrt to complete the 9-point calibration.

7-3. Automatic calibration: Move the robot, align the center of the field of view to the marker

point on the calibration board, enter the length of the field of view grid corresponding to the

length of the robot coordinate system (roughly enough to ensure that the 9 automatically

generated points do not exceed the field of view).

6.2.9 Eye-on-Hand J6 Calibration

Moving the J6 axis calibration: Refers to the camera mounted overhead on the robot J6 axis

arm, as shown in the following figure:

6.2.9.1 Mounting Condition

The camera is mounted on the J6 axis. Keep the camera plane parallel to the horizontal plane

without calibration fixtures, as shown in the following figure. The black marker point in the

figure represents the marker point on the calibration board, the red lines represent the grid

182

lines in the camera's field of view, and the intersection of the grid lines is the required marker

point.

6.2.9.2 Calibration Procedure

Same as the calibration steps in 6.4.8 Eye-on-Hand J5 Calibration.

6.2.10 Calibration Result Verification

When vision calibration is carried out with a calibration fixture, if you want to use the calibration

fixture as verification tools, go to Edit > Tool > Coordinate > Direct Method.

Create the tool coordinate system by entering the last recorded two deviations in the X and Y

directions of the calibration fixture into X and Y of the tool coordinate system.

An example of a complete vision calibration programming is given below.

The coordinates of P[2] are pixel coordinates in the vision coordinate system. Regarding the

coordinate parameter (5,5,5), the first “5” indicates the fixed camera coordinate system number,

the second “5” indicates the tool coordinate system number, respectively.

Note: For the 6-axis robots, in case of verification of eye-to-hand calibration, the Z value of the

183

P[2] point Z value is set to 0, and in case of verification of eye-on-hand calibration, the Z value is

the height relative to the user coordinate system.

The third “5” indicates the vision coordinate system number.(1,0,0,0) is the arm parameters of the

robot at the position where photo is taken.

The Cnvrt instruction is used to convert the P[2] point to a point in the tool coordinate system and

store it in P[3].

If you choose "Eye-to-Hand" calibration, do not check Visual reference point.

The final results are displayed in the notification bar and are compared to the calibration points to

determine the accuracy of the calibration. The A value -140.896 of the converted tool coordinates

is inconsistent with value A 137.574 of the tool coordinates of the robot where the photo is taken,

due to the inconsistency in direction of the vision coordinate system, direction of the robot

coordinate system, and direction of the tool.

A value represents the rotation angle of the object in the vision coordinate system, and is

converted to the angle in the tool coordinate system as A1, then

A1 = A +A’, A’ indicates the angle conversion difference

A2 = Angular difference between the direction of the robot coordinate system and the direction of

the camera coordinate system

A3 = Angular difference between the direction of the robot coordinate system and the gripper

direction or load gripping direction

A4 = Angle at the position where photo is taken in the tool coordinate system

A4 = A + A’+ A2 + A3 or A4 = A1 + A2 + A3

A4 = 137.574, A = 137.574, A1 = -140.896, then it is calculated:

A2 + A3 = A4-A1 = 137.574-(-140.896) = 278.47 or

A’ + A2 + A3 = A4-a = 137.574-137.574 = 0

Therefore, when a pixel coordinate A is given, the coordinates of the robot at the position where

the photo is taken can be calculated as: A4=A+A '+A2+A3=A+0.

184

Alternatively, you can use the conversion instruction CNVRT to obtain the corresponding value

A1 in the tool coordinate system from the pixel coordinate A:

A4= A1 + A2 +A3 = 278.47 + A1

When you choose “Eye-on-hand” calibration, please check Visual reference point and enter the

photo taking point P[3].\

7 Others

7.1 TCP multi-port connectivity

Like ordinary Ethernet devices, the Ethernet port of the controller can communicate with multiple

external devices that support TCP protocol simultaneously through a switch.

For example, one PC can monitor data through API while another visual device interacts with the

controller.

7.2 Permission Management

7.2.1 Robot Control Permissions

There are multiple devices that can control robots, but the robot controller can only be controlled

by one device at a time.

185

Control permissions are a prerequisite for the device to take control of the robot. Only after

obtaining control permissions can the device control the robot, otherwise it can only read and

monitor the robot status.

In the teach pendant, you can manage the robot control permissions. Only editor, manager and

factory users can edit the robot control permission and the robot must be in a non-motion,

non-debug, non-play mode.

The default robot control permission is the teach pendant (i.e., InoTeachPad). To control the robot

by other devices (InoRobShop, Remote Ethernet devices, Remote I/O devices, Modbus devices),

you need switch the control in the teach pendant.

Note:

The control switch does not require a reboot of the robot controller.

The emergency stop switch of the teach pendant is always in effect, regardless of the type of

device to which the control permission is assigned.

a) Teach pendant with control

The teach pendant gets control of the robot when the control permission is granted to the teach

pendant. Other devices can only read or observe parameters, and cannot modify parameters or

operate the robot.

b) InoRobShop with control

When the control permission is granted to InoRobShop, you can operate the robot via InoRobShop.

Other devices can only read or observe parameters, and cannot modify parameters or operate the

robot.

c) Remote Ethernet device with control

The remote Ethernet device gets control of the robot when the control permission is granted to the

remote Ethernet device. Other devices can only read or observe parameters, and cannot modify

parameters or operate the robot.

186

Up to four remote Ethernet devices can be connected to the robot at the same time. When control

is switched from another device to an Ethernet device for the first time, the Ethernet device also

needs to apply for the control permission through instructions.

Upon successful application of the control permission, the Ethernet device gets control of the

robot. The other three devices do not have control permission and can read parameter and monitor

robot status. However, these three devices can apply for mandatory control through instructions.

Upon successful application, the device that has the control permission will be deprived of the

control. When the control permission is granted to the Ethernet device, the default control is given

to the first Ethernet device each time the controller is turned on.

d) Remote I/O device with control

The remote I/O device gets control of the robot when the control permission is granted to the

remote Ethernet device. Other devices can only read or observe parameters, and cannot modify

parameters or operate the robot.

e) Remote Modbus device with control

The remote Modbus device gets control of the robot when the control permission is granted to the

remote Modbus device. Other devices can only read or observe parameters, and cannot modify

parameters or operate the robot.

7.2.2 IRLink Configuration Permissions

The IRLink module can be configured either through InoRobShop or teach pendant.

Only when the IRLink module is not configured via InoRobShop can you configure it via the

teach pendant.

When the IRLink module is configured via InoRobShop, the IRLink module can no longer be

configured via the teach pendant. To add another new IRLink module, you can create a new

IRLink module via InoRobShop, or clear the previous configuration using the Clear PLC-CFG

function. In either case, a system restart is required after the configuration change.

7.2.3 I/O Control Permissions

The I/O control here refers to the control of the output ports (Out, DA, etc.), not the input ports.

Control Permission Description

RC_STATIC It indicates occupation by the RC system. Go to External > I/O Mapping

and bind the outputs to system functions. At this point, the output signal is

only function dependent. Signal state cannot be changed manually.

RC_ACTIVE It indicates normal RC control state. Out or DA in this state can be

controlled normally.

PLC_ACTIVE Indicates control by PLC. Out or DA can be controlled only by PLC

software such as InoRobShop.

When IRLink configuration is made via InoRobShop, the control of the first 16 DOs (two 0808 or

one 0016) of the module is granted to RC by default. The control of the subsequently configured

DOs is granted to PLC by default. By default, the control of the AOs is granted to PLC by default.

187

With the InoRobshop, you can switch the control between RC and PLC. The change takes effect

without the need to restart the controller.

When an IRLink module is added via the teach pendant, the I/O control defaults to RC_ACTIVE

and cannot be modified to PLC via InoTeachPad. However, you can modify the control to

RC_STATIC by associating a certain function to a DO in External > I/O-Mapping.

7.2.4 Modbus Configuration Permissions

The initial Modbus configuration permissions are pending, that is, the Modbus configuration can

be made either via InoRobShop or via the teach pendant. However, when the Modbus

configuration permissions are granted to InoRobShop, you cannot configure Modbus via the teach

pendant. That is,

 ModbusRTU cannot be configured via the teach pendant if the ModbusRTU Master or Slave

is configured via InoRobShop. When the configuration in InoRobShop is canceled,

ModbusRTU can be configured via the teach pendant.

 ModbusTCP cannot be configured via the teach pendant if the ModbusRTU Slave is

configured via InoRobShop, and can be configured via the teach pendant if the configuration

in InoRobShop is canceled.

7.3 Multitasking

It allows multiple tasks to run simultaneously. The main task is responsible for motion, and other

PLC tasks perform logical operations.

7.3.1 Task Description

 Main Task Static Task Dynamic Task xqt Task

188

Type Main.pro, which is always

active and is mostly

responsible for robot

motion. Controlled by Start

and Stop instructions.

The static tasks are started

immediately upon

power-on of the robot and

run until the stop

conditions are met.

The static tasks are not

started immediately upon

power-on of the robot and

are controlled by Start and

Stop instructions along

with the main task.

The xqt tasks are controlled

separately by the

instructions Xqt, Halt, and

Resume.

Recompile

the task

1) Restart the controller

2) Re-save the project

configuration information

3) Switch edit mode to

debug mode

4) Save all settings

1) Restart the controller

2) Re-save the project

configuration information

1) Restart the controller

2) Re-save the project

configuration information

3) Switch edit mode to

debug mode

4) Save all settings

1) Restart the controller

2) Re-save the project

configuration information

3) Switch edit mode to

debug mode

4) Save all settings

Activate

the task

1) The task is automatically

activated after the project

configuration information is

re-saved

1) The task is

automatically activated

after the project

configuration information

is re-saved

2) Activate or deactivate

the static task via the task

commissioning panel

1) The task is

automatically activated

after the project

configuration information

is re-saved

2) Activate or deactivate

the task via the task

commissioning panel

1) Activate the task by xqt

instruction and deactivate

the task by quit instruction

2) The xqt task is

deactivated in the following

situations:

①The projects is recompiled

②Any task returns to the

start line

③Control switch occurs

Conclusion:

1. There is no coupling relationship between activation and deactivation of each task.

Start/Stop

the task

1) Start the task via the start

button;

1) The task starts

automatically after being

activated;

2) If a static task has been

configured before restart,

the task runs automatically

after restart;

3) InoTeachPad: When the

task is active, stop the task

by deactivating the task in

the task management

interface;

1) The dynamic task starts

with the start of the main

task.

1) The xqt task is activated

and started by xqt

instruction;

2) After stopping the task by

halt instruction, you can start

it again by resume

instruction;

1) Stop the task via the stop

button;

2) The task stops when an

alarm occurs;

1. Stop the task via the

start button in the task

management interface;

2. The task stops when the

corresponding static task

channel encounters an

error;

3. PC platform: When the

task is started, stop the task

via the stop button in the

task management interface;

4. InoTeachPad: When the

task is inactive, stop the

task via the stop button in

the task management

interface;

Note: When the static task

is reactivated, the static

task starts again.

1. The dynamic task stops

with the stop of the main

task;

2. PC platform: When the

main task is inactive and

the dynamic task is started,

stop the dynamic task via

the stop button in the task

management interface;

1. The xqt task stops with

the stop of the main task;

2. When the xqt task is

activated, stop it by halt

instruction;

189

Conclusion:

1. Tasks can only be started and stopped in an active state;

2. Static tasks are not affected by the state of the main task;

Resume

the task

after

alarm

Clear the alarm and restart

the task

Clear the alarm, reactivate

the static task, or

synchronize the project

Clear the alarm and restart

the task

Clear the alarm and restart

the task

Support

for

single-step

debugging

Available No Available No

Conclusion:

1. When you click a line of instruction, the main task and dynamic task advance one line each;

2. If the current line of the main task is not completed, when you click another line of instruction, the main task will

continue to execute the current line, and the dynamic task will advance one more line;

Support

for return

to the

start line

Yes, return to the start line

for a single task or for all

tasks

Yes, return to the start line

for a single task

Yes, return to the start line

for a single task or for all

tasks

No

Conclusion:

1. The task can return to the start line only when the task is in stop or ready state.

7.3.2 Use of Multitasking

Common usage:

The main task is responsible for motion, and the PLC tasks perform logical operations. The main

task changes motion in real time according to data from the processing of the PLC tasks.

Note:

1. There should be no motion or motion parameter type instructions in tasks 1, 2, and 3:

Movj, Movl, Movc, Jump, JumpL, Home, Velset value/OFF, RefSys, LockScrew, UnLockScrew,

ArmChange, SlewMode, MovToPut, MovToGet, MovFromPut, MovFromGet, EoffsOn,

EoffsOff, LoadScrewParm, CheckLock, UnLockScrew, CheckUnLock, ScrewStop,

SetAccRamp, SetFlyMode, SetFlyPress, AvgCurLmt, MaxTrqLmt, LatchEnable, ClearLatchPos,

GetLatchPos, SetCollMode, SetAxiscollMode, SetAxisCollLevel, GripLoad, SetGripLoadMass,

SetGripLoadCog, SetGripLoadOrient, SetLoadInertia, SetToolMass, SetToolCog,

SetToolOrient, SetToolInertia, SetSysToolNo

If the above motion instructions are introduced during programming, they will be skipped.

2. From the perspective of execution efficiency, task 0 (main task) has the highest execution

efficiency, while tasks 2, 3, and 4 have relatively low execution efficiency. This is reflected in the

fact that when multiple tasks perform calculations or process I/O separately, task 0 performs faster.

3. The PLC cyclically executes tasks with a cycle time of about 10ms.

Case 1:

Selective motion based on communication data

Scenarios:

The controller performs two tasks simultaneously:

1) Constantly communicates with the external device and sets the flag to the corresponding

value depending on whether the value of the data received from the external device is 201 or

not;

190

2) Selectively performs Movj P[1] and Movj P[0] motion based on the flag value.

Design:

Main task: Continuously determines the value of a global numerical variable (such as B4 below)

within the loop, and executes the corresponding motion based on the value.

PLC task: Constantly communicates with the outside world and sets B4 as the corresponding

value based on the read results.

Main task: Main.pro

START;

 Movj P[0],V[30],Z[0],Tool[0];

 L[0]:

 If B[4] == 2

 Movj P[1],V[30],Z[0],Tool[0];

 EndIf;

 If B[4] == 4

 Movj P[2],V[30],Z[0],Tool[0];

 EndIf;

 Goto L[0];

END;

PLC task: Communication.pro

START;

 String recv= "000000";

 While LB[0] <> 1

 Open Socket("10.44.97.53",2000,3000, LB[0]);

 EndWhile;

 L[1]: ##PLC task characteristics, self-cycling, this line can also be

removed

 Send Port[3000],"hello",String;

 L[0]:

 Get Port[3000],T[0],Goto L[0];

 recv = GetPortbuf(0,100,3000);

 If StrToR(recv) == 201

 B[4] =4;

 Else

 B[4] =2;

 EndIf;

 Goto L[1]; ##PLC task characteristics, self-cycling, this line can also be removed

END;

For the above PLC task,

1. If set to a static task, it starts immediately upon power-on of the robot or re-save of the project

configuration, regardless of the start and stop instructions.

2. If set to dynamic task, it start and stops as the main task starts and stops.

191

3. If the task communicating with the outside world is Task 3, the following should be added at

the beginning of the program of Task 0: Xqt 3, "Communicatin.pro";

7.3.3 Multitasking Alarms

In Appendix 1, only the main task alarms are listed. For multitasking alarms, the following rules apply:

For example:

Robot system alarm 0x0230 occurs. The corresponding alarm code cannot be found in the alarm list in Appendix 1,

so it is considered a multitasking alarm. In the alarm list, it can be found that the alarm code 0x0030 is "Decoding

error during operation". Due to the high order being 2, it is inferred that 0x0230 is the alarm for task 1, and the

alarm message is "Decoding error during operation".

7.4 Flying Trigger

The flying trigger function allows the robot to take photos and adjust the pose of the part

accordingly without stopping the robot or part during movement of the robot from the part pickup

point to the part discharge point. This function reduces the cycle time.

As shown in the image below, P1 is the part pickup point, P2 is the photo taking point, P3 is the

transition point and P4 is the part discharge point. Normally, the robot needs to pause at P1, P2, P3

and P4. The robot does not pause at P2. Instead, when the robot is predicted to reach P2 during the

movement from P1 to P3, the controller controls DO for output, triggering the camera to take

photos and the servo to latch the position. Then the controller determines the position and

orientation at which the part will be placed at P4 based on the vision processing results and the

latched position.

P1

P3

P4

P2

The flying trigger function is achieved by a combination of three functions: position latching,

192

motion I/O, and motion without waiting.

For programming of the flying trigger function, see the Programming Guide. The trigger signals

available include Out[14] and Out[15].

Note:

1) For IRCB500, IRCB300 series controllers, the position latch function is supported. Users

only need to connect the corresponding I/O to the camera as a trigger for taking photos.

2) The position latch function is not supported for IRCB10 series controllers.

3) The IRCB300 series controllers support position latching triggered by 1 signal (fixed to

Out15). To avoid the problem of unavailability of position latching function due to damage,

IRCB500 series controllers support position latching triggered by 2 signals: Out14 or Out15,

and the default is Out[14].

The following is a comparison between normal photo-taking and flying trigger photo-taking.

START;
#Enable latch function
LatchEnable ON;
ClearLatchPos;
#Vision initialization
...
#Move to pickup point
Jump P[1],V[100],Z[0],LH[0],MH[0],RH[10];
#Motion transition point, output rising edge when passing P2,
preprocess subsequent instructions
Jump
P[3],V[100],Z[5],NWait,Out(15,OFF,D[0]),Out(15,ON,T[50]),LH[10],MH[0]
,RH[0];
B1 =0;
#Wait for latch to be triggered by rising edge
While B1 == 0
B1 =GetLatchPos(P[20],2,0,0);#Save latched position to P[20]
EndWhile;
Print P[10];
#Acquire vision data and save it to P[10]
...
#Correct the coordinates of the discharge point according to P[20] and
P[10]
P[4]=...
#Move to discharge point
Movj P[4],V[100],Z[0];
END;

START;
#Vision initialization
...
#Move to pickup point
Jump P[1],V[100],Z[0],LH[0],MH[0],RH[10];
Set Out[15],OFF;
#Motion transition point, output rising
edge when passing P2, preprocess
subsequent instructions
Jump P[2],V[100],Fine,LH[10],MH[0],RH[0];
Set Out[15],ON;
Movj P[3],V[100],Z[5],LH[0],MH[0],RH[0];
#Acquire vision data and store it to P[10]
...
#Correct the coordinates of the discharge
point according to P[20] and P[10]
P[4]=...
#Move to discharge point
Movj P[4],V[100],Z[0];
END;

P1

P3

P4

P2

P1

P3

P4

During movement, signal the camera
to take a picture while and the servo
to latch the current position

Stop at P2 and signal the camera to
take photos before continuing the
movement

Common photo taking Flying trigger

193

7.5 Teach Pendant Synchronization

This feature is for handheld teach pendant only. With this feature, you can upgrade the handheld

teach pendant to the same version as the controller.

If the version of the teach pendant is different from the version of the controller (e.g. S03.21

compared to S03.20), the teach pendant will automatically pop up the "Synchronization or not"

prompt after being powering on.

In addition, the Sync button will also appear on the Monitor > Version interface. You can click

this button to synchronize the version.

Limitations:

After the controller has been flashed through the SD card, the synchronization function is not

supported. In this case, additional manual operations are required to support the synchronization

function. If the controller is flashed via network or updated through the update button on the teach

pendant, the synchronization function is not affected.

Manual operations:

Place two teach pendant packages (standard and simple versions) that are consistent with the

controller version into the "TeachPandent" directory of SD card storing the controller program.

(Use FTP to place the packages.)

As an example, assuming that the controller now has an IP of 10.44.97.57, do as follows on the

PC:

Note:

1. Place the packages strictly as required. Do not place unqualified or excessive packages.

2. It is not feasible to directly remove the SD card from the controller and place it in the card

reader on the PC, as the SD card format is not supported by the PC.

7.6 Retentive Memory

This feature allows the system to save the relevant variable values immediately when the

system is shut down normally or when there is a sudden power failure during operation, and

the supported variable types are as follows:

1) Global translation variables (PR);

2) Global numerical variables (B/R/D);

3) Global string variables (Str).

194

Note:

1) The retentive memory requires hardware support.

2) The global translation variables (PR), global numerical variables (B/R/D), and global string

variables (Str) are not saved immediately at backup, and are only saved when power is lost.

3) The global string variables (Str) can be saved to a file when they are modified in the monitoring

interface.

4) The global position variables (GP) can be saved to a file by clicking the Save button in the

monitoring list.

7.7 Safety door

The safety door function is supported by the IRCB300 series controllers, the IRCB100-6AT series

controllers, and the IRCB500 series controllers.

It is not supported by the IRCB10 series controllers.

Activation of the safety door:

1. Hardware wiring: The safety door supports dual-channel control. Connect the safety door

lines to the safety door interfaces designated by the system I/Os (A6 and A7 for one channel;

A8 and A9 for another). When only one channel is used, set the wiring of the other channel to

the normally closed state. The following figure shows the wiring of safety door when

in-cabinet power supply is used.

Controlling two channels with a shared

relay

Controlling two channels with a relay for each

channel

For more information, see:

IRCB300 Series 4-Axis Robot Controller User Guide

IRCB300 Series 6-Axis Robot Controller User Guide

IRCB500 Series 4-Axis Robot Controller User Guide

IRCB500 Series 6-Axis Robot Controller User Guide

195

2. In the software, enable the safety door and select the safe stop mode.

Safety door switch:

For the IRCB500 series controllers, there is no safety door switch and the safety door feature is

enabled by default in order to meet the safety requirements.

For the SCARA robots, the safety door feature is disabled by default; and for the 6-axis robots, the

safety door feature is enabled by default.

Stop mode:

Use of safety door:

When the safety door feature is activated, the safety door signal will be detected in the play mode.

In the play mode, when the safety door is opened, the program is suspended or stopped (depending

on the user's configuration) and a prompt is displayed on the interface.

196

Note: For the IRCB500 series controllers, the system also generates an alarm "Safety door

triggered" when the stop mode is set to StopMode 0 or StopMode 1.

7.8 Current Protection

(1) Application scenario:

By default, the motion parameters for each model are factory default. When the motion efficiency

on site does not meet the requirements, the robot motion parameters can be adjusted. For example,

you can increase the motion speed and acceleration appropriately in the Set interface.

When commissioning the motion parameters, pay attention to the average load rate and the current

value.

 The robot generates warnings and alarms to protect motors and reducers when the rate is

too high.

 When motion parameters are adjusted and no warnings or alarms are desired, you can

appropriately increase the "global current limit coefficient" and "local current limit

coefficient".

Note: The increase of the limit coefficient should be moderate, excessive increase will reduce the

performance and life of the motor and reducer.

Description of the current protection parameters:

Real time value of average load rate

Average load rate protection threshold*Global average load rate limit coefficient*Local average load rate

limit coefficient

= Average load rate

Global average load rate limit coefficient: Go to Set > Motion > AxisPara > AvrLoadLim.

Local average load rate limit coefficient: Set the coefficient in the instruction AvgCurLmt.

Average load rate: Go to Monitor > Protection.

Real-time current value

Current protection threshold*Global current limit coefficient*Local current limit coefficient

= Current rate

Max current value

Current protection threshold*Global current limit coefficient*Local current limit coefficient

= Max current rate

Global current limit coefficient: Go to Set > Motion > AxisPara > CurrentLim.

Local current limit coefficient: Set the factor size in the instruction MaxTrqLmt.

Current rate: Go to Monitor > Protection.

Max current rate: Go to Monitor > Protection. Due to the rapid changes in the real-time value of

the current during movement, it is inconvenient to view it. Therefore, a maximum current rate is

197

added, which is equivalent to the maximum value recorded in history, enabling easy observation.

(2) Monitoring and debugging method:

Go to Monitor > Protection to monitor the average load rate and current rate.

Note: For the current, in addition to the current rate, the maximum rate is also displayed to record the historical

maximum current. It can be reset by the Reset Max button.

The rate is divided into the following three levels.

Level Safe Warning Danger

Average load rate/set threshold 0 to 100% 100% to 110% 110% or higher

Level Safe Warning Danger

Current/set threshold reference 0 to 110% 110% to 130% 130% or higher

Note:

 The above thresholds apply after the robot is warmed up.

 The current detection triggers a warning or alarm only when the threshold is exceeded for

30ms. When the instantaneous current is too high, an alarm will also be triggered, and the

maximum current value may not exceed 130% at this time.

 The average load rate detection triggers a warning or alarm only when the threshold is

exceeded for 30s.

Debugging principles:

 Efforts should be made to ensure that the average load rate and current rate are in a "safe"

state during operation.

 When in the "warning" state, a system warning will be triggered, but the robot will not stop

automatically. You can continue to use the robot without adjusting the motion parameters.

 When in a "danger" state, a system alarm will be triggered and the robot stops automatically.

198

In this case, you need to adjust the motion parameters to return them to the safe range.

 In particular, in applications where efficiency is required, if you want to adjust motion

parameters while avoiding warnings or alarms of high average load rate or high current, you

can appropriately increase the "global limit coefficient" and "local limit coefficient". It

should be noted that in this case, the performance and lifespan of the motor and reducer are

sacrificed, and it is only recommended to debug under the guidance of the manufacturer.

 Low ambient temperature may cause an average load rate alarm. Before using the robot,

warm it up first.

(3) Set the limit coefficient:

You can set the global limit coefficient for all axes through the user interface, and set the local

limit coefficient for an individual axis through the program.

Characteristics:

 Switch: Only when both the main switch and the sub-switch of a certain axis are turned on

can the detection of that axis be enabled, thus continuous detection is made possible. If the

main switch is turned off and the sub switch is turned on, the detection of that axis is still

disabled

 Values: The global limit coefficient and the local limit coefficient act together, multiplying

the two together acts on the threshold.

To set the global limit coefficient through the user interface, go to Set > Motion > AxisPara >

AvrLoadLim/CurrentLim.

You can use the AvgCurLmt/MaxTrqLmt instruction to set the local limit coefficient.

① Configuration through User Interface

The parameters related to the current protection can be configured in factory mode.

Detection switch: Once opened, motion detection of all axes is active; once closed, no more

detection is performed. It is opened by default.

Setting value: Sets the global limit coefficient. In form of percentage, default 100%.

199

② Configuration through Instructions

The single axis can be dynamically configured by instruction.

You choose to turn off/on detection for a single axis and adjust the detection threshold in the robot

program, which is flexible and convenient.

a) AvgCurLmt

Function: Configures the average load rate limit.

Description: Sets whether the average load rate detection is in effect and the average load rate

limit parameters in the program. Applicable to a single axis or all axes.

Format: AvgCurLmt (Enable, AxisNo, ratio);

Parameters:

Enable: Specifies valid/invalid through integer data. 1 for valid, 0 for invalid.

AxisNo: Specifies the axis number using integer data. Special case: Specifies all axes by '0'.

ratio: Specifies a local limit coefficient for the single-axis average load rate using integer data,

in percentage, range (1, 150). This parameter is invalid if Enable is set to 0.

Detection switch properties:

1. The main switch on the teach pendant defaults to Open. When the robot restarts, it restores to

the default value.

2. The detection switch of each single axis in the instruction defaults to "Open” (True), and the

local limit coefficient of single axis is set to 100 by default. Restore the default parameters in

the following situations:

(1) The robot restarts.

(2) The program is executed from the beginning (stop and start again from the

beginning).

(3) Switch programs or exit programs (excluding Call).

(4) Save the program.

(5) Switch between Teach/Play mode.

200

b) MaxTrqLmt

Function: Configures the maximum torque limit (current limit).

Description: Sets whether the current detection is in effect and the current limit parameters in the

program. Applicable to a single axis or all axes.

Format: MaxTrqLmt (Enable, AxisNo, ratio);

Parameters:

Enable: Specifies valid/invalid through integer data. 1 for valid, 0 for invalid.

AxisNo: Specifies the axis number using integer data. Special case: Specifies all axes by '0'.

ratio: Specifies a local limit coefficient for the single-axis current using integer data, in

percentage, range (1, 150). This parameter is invalid if Enable is set to 0.

Detection switch properties:

1. The main switch on the teach pendant defaults to Open. When the robot restarts, it restores to

the default value.

2. The detection switch of each single axis in the instruction defaults to "Open” (True), and the

local limit coefficient of single axis is set to 100 by default. Restore the default parameters in

the following situations:

(1) The robot restarts.

(2) The program is executed from the beginning (stop and start again from the

beginning).

(3) Switch programs or exit programs (excluding Call).

(4) Save the program.

(5) Switch between Teach/Play mode.

7.9 API

7.9.1 Description of API Call

Using the APIs, users can develop proprietary robotic system application software through

programming languages such as VB, VC, C#. The following is an example of C/C++ application

development in VS platform, introducing the implementation and invocation examples of basic

functions.

a) Connecting/Disconnecting the robot

Call the IMC100_Init_ETH() function to connect the robot over the network, and call

IMC100_Exit_ETH() to disconnect the robot.

Before calling any other API, you should first call IMC100_Init_ETH() once to ensure that the

robot is connected each time you open the application. If the function returns a value other than

zero, check that the robot control system starts up correctly and troubleshoot according to

Appendix III.

IMC100_Exit_ETH () should be called after other APIs are called, and the robot will be

disconnected after 0 is returned.

A code example for calling IMC100_Init_ETH() is shown below:

201

int ret = 0;

 DWORD dwIP1 = 0xc0a81719; //IP: 192.168.23.25

 int ipPort = 2222;

 int timeOut = 5; //Communication timeout 5s

 int robotNo = 0;

 ret = IMC100_Init_ETH(dwIP1, ipPort, timeOut, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 return;

 }

A code example for calling IMC100_Exit_ETH() is shown below:

ret = IMC100_Exit_ETH(0)

 if(ret < 0)

 {

 //Add exception handlers here

 return;

 }

b) Monitoring the robot status

The IMC100 robot provides hundreds of API function interfaces for monitoring robot status. This

class of functions is not restricted by control permission or user level. Before calling this class of

functions, make sure that the robot system has been started normally and the connection to the

robot system is successful. This class of functions includes IMC100_Get_PosHere(),

IMC100_Get_DINum(), IMC100_Get_StrPara(), IMC100_Get_P(), and so on.

A code example for calling IMC100_Get_PosHere() is shown below:

 //Query the position value of the robot in the current coordinate system

int ret = 0;

 int robotNo = 0;

 int dinum = 0;

 int dists = 0;

ROBOT_POS posTemp;

 memset(&posTemp, 0, sizeof(posTemp));

 ret = IMC100_Get_PosHere(&posTemp, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

}

A code example for calling IMC100_Get_DI() is shown below:

 //Query the DI0 status, dists being 1 means ON

ret = IMC100_Get_DI(dinum, &dists, robotNo);

 if(ret < 0)

202

 {

 //Add exception handlers here

}

c) Obtaining the control permission

Call IMC100_AcqPermit() to obtain permission for robot control, and call IMC100_CurPermit()

to query client that currently holds the permission.

Since one robot system can be connected to multiple Ethernet clients, a control permission must

be obtained when one of the clients needs to control the robot. Before calling the function, make

sure that the robot system has been started normally and the connection to the robot system is

successful. Also, go to Set > System > Others > Others > Control Device, and select "Remote

Ethernet".

A code example for calling IMC100_CurPermit() and IMC100_AcqPermit() is shown below:

int ret = 0;

 int ower = 0;

 DWORD IpAddr = 0;

 int ipPort = 0;

 int robotNo = 0;

 ret = IMC100_CurPermit(&ower, &IpAddr, & ipPort, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 return;

 }

 if (ower! = 1) //The current client device is not granted the permission

 {

 Ret = IMC100_AcqPermit(1, robotNo); //Forced to get the permission, can get it

normally when ower is 0

 if(ret < 0)

 {

 //Add exception handlers here

 }

 }

d) User login

Call IMC100_ CurUserType() to query the current user level and call IMC100_ UserLogin() to

log in to the system and calls IMC100_ UserLogout() to log out of the system.

Users of different levels can control and operate the robot to varying degrees and ranges.

Before calling the function, make sure that the robot system has been started normally and the

connection to the robot system is successful. Go to Set > System > Others > Others > Control

Device, and select "Remote Ethernet".

A code example for calling IMC100_CurUserType() ， IMC100_UserLogin() and

IMC100_UserLogout() is shown below:

203

int ret = 0;

 int type = 0;

 char password[8];

 int robotNo = 0;

 ret = IMC100_CurUserType(&type, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 type = 2;

 memcpy(password, "000000", sizeof(password));

ret = IMC100_UserLogin(type, password, robotNo); //Log in as admin, password is the same

as the teach pendant password

 if(ret < 0)

 {

 //Add exception handlers here

 }

 ret = IMC100_UserLogout(robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

e) Returning the robot to the origin

Call IMC100_DsMode() to turn on the data streaming mode and IMC100_Home() to control the

robot to return to the origin.

Before calling the function, make sure that the robot system has been started normally and the

connection to the robot system is successful, and the control permission is obtained.

A code example for calling IMC100_DsMode() and IMC100_Home() is shown below:

int ret = 0;

 int sts = 0;

 int robotNo = 0;

 ret = IMC100_Get_DsMode(&sts, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 if(sts == 0) //Data streaming mode is off

 {

 int cmd = 1;

 ret = IMC100_DsMode(cmd, robotNo); //Turn on data streaming mode

 if(ret < 0)

{

204

//Add exception handlers here

 }

 }

 int num = 0;

 ret = IMC100_Home(num, robotNo); //The robot returns to origin 0

 if(ret < 0)

 {

 //Add exception handlers here

 }

7.9.2 Typical Application Cases

The following is a complete typical application case to further illustrate the process of calling

functions.

a) Running robot program through the remote Ethernet client

Make sure the target robot program can run normally before this operation.

Overall process:

Connect robot

Get control
permission

Sing in as
manager

Is in E-STOP?

Release E-STOP

Fault?

Restore fault

Set program path
and open program

Set running speed
level

Switch to play
mode

Start program

Stop program

Switch to teach
mode

Disconnect robot

N
O

YES

N
O

YES

The code example is as follows:

int ret = 0;

 DWORD dwIP1 = 0xc0a81719; //IP: 192.168.23.25

 int ipPort = 2222;

 int timeOut = 5; //Communication timeout 5s

 int robotNo = 0;

 /*Connect to robot*/

 ret = IMC100_Init_ETH(dwIP1, ipPort, timeOut, robotNo);

205

 if(ret < 0)

 {

 //Add exception handlers here

 return;

 }

 int ower = 0;

 DWORD IpAddr = 0;

 int ipPort = 0;

 /*Obtain control permission*/

 ret = IMC100_CurPermit(&ower, &IpAddr, & ipPort, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 if (ower! = 1) //The current client device is not granted the permission

 {

ret = IMC100_AcqPermit(1, robotNo); //Forced to get the permission, can get it

normally when ower is 0

 if(ret < 0)

 {

 //Add exception handlers here

 }

 }

int type = 2;

 char password[8];

 memcpy(password, "000000", sizeof(password));

 /*Log in as admin*/

ret = IMC100_UserLogin(type, password, robotNo); //Log in as admin, password is the same

as the teach pendant password

 if(ret < 0)

 {

 //Add exception handlers here

 }

 int sts = 0;

 /*Emergency stop state*/

 ret = IMC100_Get_EStopSts(&sts, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 if(sts == 1)

206

 {

 int cmd = 0;

 /*Emergency stop released* /

 ret = IMC100_EmergStop(cmd, robotNo);

 if(ret < 0) //Add exception handlers here

 }

 int err = 0;

 /*Fault query*/

 ret = IMC100_Get_SysErr(&err, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 if(err != 0)

 {

 /*Reset fault*/

 ret = IMC100_ResetErr(robotNo);

 if(ret < 0) //Add exception handlers here

 }

 char path[128];

 memcpy(path, "TeachProgram/Test.pro", sizeof(path));

 /*Set program path*/

 ret = IMC100_Set_CurPrgPath(path, robotNo);

 if(ret < 0) //Add exception handlers here

 int vel = 50;

 /*Set operating speed*/

 ret = IMC100_Set_Vel(vel, robotNo);

 if(ret < 0) //Add exception handlers here

 int mode = 2; //Play mode

 /*Set play mode*/

 ret = IMC100_Set_Mode(mode, robotNo);

 if(ret < 0) //Add exception handlers here

 cmd = 1;

 /*Start program*/

 ret = IMC100_PrgCtrl(cmd, robotNo);

 if(ret < 0) //Add exception handlers here

 cmd = 0;

 /*Stop program*/

207

 ret = IMC100_PrgCtrl(cmd, robotNo);

 if(ret < 0) //Add exception handlers here

 int mode = 1;

 /*Set teach mode*/

 ret = IMC100_Set_Mode(mode, robotNo);

 if(ret < 0) //Add exception handlers here

 /*Disconnect robot*/

 ret = IMC100_Exit_ETH(0)

 if(ret < 0) //Add exception handlers here

b) Planning points and controlling robot motion through the remote Ethernet

client

Make sure that the robot can safely reach the points planned by the remote Ethernet client.

Overall process:

Connect robot

Get control
permission

Is in E-STOP?

Release E-STOP

Fault?

Restore fault

Enable robot

Move to positions
by MovJ

instruction

View running
state of

instructions

Continue to move
to positions by

MovJ instruction

Close data stream
mode

Disconnect robot

NO

YES

NO

YES

Open data stream
mode

The code example is as follows:

int ret = 0;

 DWORD dwIP1 = 0xc0a81719; //IP: 192.168.23.25

 int ipPort = 2222;

 int timeOut = 5; //Communication timeout 5s

208

 int robotNo = 0;

 /*Connect to robot*/

 ret = IMC100_Init_ETH(dwIP1, ipPort, timeOut, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 return;

 }

 int ower = 0;

 DWORD IpAddr = 0;

 int ipPort = 0;

 /*Obtain control permission*/

 ret = IMC100_CurPermit(&ower, &IpAddr, & ipPort, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 if (ower! = 1) //The current client device is not granted the permission

 {

ret = IMC100_AcqPermit(1, robotNo); //Forced to get the permission, can get it

normally when ower is 0

 if(ret < 0)

 {

 //Add exception handlers here

 }

 }

 int sts = 0;

 /*Emergency stop state*/

 ret = IMC100_Get_EStopSts(&sts, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 if(sts == 1)

 {

 int cmd = 0;

 /*Emergency stop released* /

 ret = IMC100_EmergStop(cmd, robotNo);

 if(ret < 0) //Add exception handlers here

 }

 int err = 0;

209

 /*Fault query*/

 ret = IMC100_Get_SysErr(&err, robotNo);

 if(ret < 0)

 {

 //Add exception handlers here

 }

 if(err != 0)

 {

 /*Reset fault*/

 ret = IMC100_ResetErr(robotNo);

 if(ret < 0) //Add exception handlers here

 }

 cmd = 1;

 /*Turn on data streaming mode*/

 ret = IMC100_DsMode(cmd, robotNo);

 if(ret < 0) //Add exception handlers here

 cmd = 1;

 /*Enable the motor*/

 ret = IMC100_MotorEnable(cmd, robotNo);

 if(ret < 0) //Add exception handlers here

 ROBOT_POS pos;

 memset(&pos, 0, sizeof(pos));

 pos. pos[0] = 10;

 pos.coord = 1;

 /*MovJ motion*/

 ret1 = IMC100_MovJ2(pos1, 100, 0, robotNo)

 if(ret < 0) //Add exception handlers here

 /*Motion completion status check*/

 ret = IMC100_Get_CurCmdSts(&sts, robotNo);

 if(ret < 0) //Add exception handlers here

 if(sts == 0)

 {

 //Motion incomplete, custom action, can be queried by cycle

 }

 memset(&pos, 0, sizeof(pos));

 pos. pos[0] = 100;

 pos.coord = 1;

 /*MovJ motion to next point*/

 ret1 = IMC100_MovJ2(pos1, 100, 0, robotNo)

 if(ret < 0) //Add exception handlers here

210

 cmd = 0;

 /*Turn off data streaming mode*/

 ret = IMC100_DsMode(cmd, robotNo);

 if(ret < 0) //Add exception handlers here

 /*Disconnect robot*/

 ret = IMC100_Exit_ETH(0)

 if(ret < 0) //Add exception handlers here

7.10 Pose Calibration

Due to the large number of degrees of freedom and flexible movements of the 6-axis robot, the

TCP can be in any pose toward the workbench at different angles. Therefore, it is difficult to

ensure that TCP is working directly towards the work object through joint teaching. With this

function, the Z-axis direction can be calibrated to align with the axis direction of a user coordinate

system (X+, X -, Y+, Y -, Z+, Z -).

The calibration flowchart is as follows:

1. When you select the tool to be calibrated and the user coordinate system, the current tool

number and user coordinate system number are activated, and the coordinate setting interface

will also be changed accordingly.

2. Press and hold the Pose-Calib button. The Z-axis of TCP automatically aligns to the closest

axis of the user coordinate system.

211

Limit: When around J1 = 0 °, when you align with the X-axis of the base coordinate system

through the Pose-Calib button, the motion will approach the singularity, resulting in abnormal

acceleration or excessive motion.

7.11 Optimal Trajectory

7.11.1 Description

The optimal trajectory function automatically adjusts motion parameters based on load,

eliminating the need for users to manually adjust motion parameters, which can bring two

improvements:

1. Improved ease of use: No need to manually adjust the parameters, automatically use the

appropriate acceleration to achieve the optimal cycle time, while not exceeding the current

specification.

2. Improved efficiency: As shown in the figure below, the allowable acceleration at different

positions is different, and the optimal trajectory can continuously change with the allowable value,

keeping the joint output at maximum and achieving optimal acceleration and deceleration

efficiency.

7.11.2 Commissioning Procedure

When the optimal trajectory function is turned on, the robot motion is not affected by the motion

acceleration parameters set through the user interface, but are automatically determined from the

model.

Step 1: Set the load parameters correctly, including the tool load and the work object load. Note

that even if the load is very small, it should be set. If the load mass is zero, the system will assume

that the user has forgotten to set the load and will move at the maximum load for safety reasons,

resulting in very slow motion.

Step 2: Use the instruction "RapidMove (PTP, ON)" to start RapidMove mode. This instruction

can be used at the beginning of the program so that RapidMove can be turned on for the entire

project, or the RapidMove mode can be turned on or off at any time during the process. For details,

see the instruction reference guide.

Step 3: Use instructions to commission the current and cycle time.

The magnitude of the current is positively correlated with the acc coefficient in the instruction.

The acc coefficient in a single instruction can be modified, or it can be batch modified through the

212

SetAcc instruction. The details of the SetAcc instruction, see the instruction reference guide.

After operation, if the maximum current is less than 100%, it indicates that the cycle time can be

further shortened. In this case, gradually increase Acc to 120 or until an alarm occurs. If there are

no vibration and current alarms, you can gradually increase the value of SetAccRamp from 50.

If there is a current over limit alarm or drive alarm, first check if the load setting is correct. If the

vibration is significant, first reduce the SetAccRamp parameter. If the problem persists,

appropriately reduce the value of SetAcc.

Step 4: For situations where the requirements on cycle time are very high and the problem cannot

be solved after the above steps, you can observe where the current alarm occurs and only reduce

the Acc coefficient at that location, while using 100% or 120% for Acc coefficient at other

locations.

Note: This function is based on a kinetic model, if the model is not accurate it can lead to current

alarms or low efficiency. If there is a high current alarm only for individual axes and the current of

other axes is low, the model may be inaccurate and can be corrected by the model correction

function. See 4.4 - Motion > AdvOption > TorqueModel.

7.11.3 Example

Start;

 GripLoad 1; //Activates the load and sets the corresponding load parameters in the interface

 RapidMove (ALL, ON); //Enables optimal trajectory function

 SetAcc(100, 100); //Adjusts the current level via the SetAcc instruction

 L[0]:

 Movj P[0],V[100],fine,Tool[0];

 Movj P[1],V[100],fine,Tool[0];

Goto L[0];

End;

7.12 Self-Learning Vibration Suppression

7.12.1 Description

Scenario: The self-learning vibration suppression feature can be used to reduce vibrations when a

large vibration condition is found when the program is running.

Step 1: Observe the execution of the program to identify the vibrating instructions with high

vibrations, and attach SLON to these motion instructions.

Step 2: Add the SLMode instruction at the beginning of the program to set the vibration

suppression level.

Step 3: Re-execute the program and the system automatically learns during the movement process.

(The self-learning process will cause the motion instructions to pause for an additional 1.5 seconds

after the motion is completed.)

Step 4: After self-learning is completed, the system can be used normally and vibration is

suppressed (As self-learning has already been finished in step 3, running the program again will

not repeat the learning. The SLMode instruction at the beginning of the program suppresses the

213

vibration of all motion instructions with SLOn.)

Note:

The learned data does not move with the project and therefore the suppression effect does not

directly follow the project.

If self-learned vibration suppression is used on one device and the project is subsequently

migrated to another device, the vibration suppression will need to be re-learned. Alternatively, you

can export the learned data from the previous device to another device after migrating the project.

This saves the self-learning time for unlearned robots in the case of batch replications of

production lines.

7.12.2 Related Instructions

The instructions relating to self-learning vibration suppression are as follows.

7.12.2.1 SLVSMode

Name SLVSMode

Function Sets the self-learning vibration suppression mode

Description This instruction is used to enable or disable the self-learning vibration suppression.

Format SLVSMode modePara;

Parameter The modePara parameter includes four modes: HighLevel, MidLevel, LowLevel, and Off.

Control

permission

Supported under every control permission, including APIs

Scope of

instruction

1） Only active in main task, not supported in multitasking

2） Project level: Upon compilation of the program or return to the start of the main

program, the parameter is initialized to Off.

Detailed

description

1） HighLevel, MidLevel, and LowLevel indicate that self-learning vibration suppression

is turned on, with different levels of vibration suppression. Off means vibration

suppression is turned off.

2） The higher the level of vibration suppression, the better the effect of vibration

suppression. In terms of the amplitude of vibration, HighLevel ≤ MidLevel ≤

LowLevel, and in terms of execution time, HighLevel ≥ MidLevel ≥ LowLevel.

3） When you need to use the self-learning vibration suppression feature, it is

recommended to test with MidLevel first. If the vibration does not meet the

requirements, switch to HighLevel; if the execution time does not meet the

requirements, switch to LowLevel.

Example 1) In the following program, the self-learning vibration suppression mode will be set to

the medium level mode after the SLVSNode MidLevel instruction has been executed.

For B[0]=0,B[0]<2,Step[1]

 Movj LP[0],V[30],Z[0],SLOn;

 Delay T[1];

 Movj LP[1],V[30],Z[0],SLOn;

 Delay T[1];

214

 SLVSMode MidLevel;

EndFor;

Note

7.12.2.2 SLOn/SLOff/SLReset

Name SLOn/SLOff/SLReset

Function It marks movements that require self-learning to suppress vibration.

Description This parameter is the default parameter for the motion instructions and is used to mark

movements that require self-learning to suppress vibrations.

Format Movj/Movl/Movc/Jump/JumpL, …, [SLOn/SLOff/SLReset];

Parameter 1) This parameter includes SLOn, SLOff, and SLReset. SLOn indicates that the motion

requires self-learning, SLOff indicates that the motion does not require self-learning,

and SLReset indicates that the motion requires re-learning.

2) SLOff is the default, indicating that the motion does not require self-learning.

Control

permission

Not supported for APIs

Scope of

instruction

Same with motion instructions, not supported in multitasking

Detailed

description

1) Self-learning is possible only when the global motion speed is greater than 49%, and

not when it is less than 49%.

2) The time for each self-learning is approximately 1.5 seconds.

3) If SLOn, when the instruction is executed for the first time, the robot will stop for

about 1.5 seconds after reaching the destination and automatically learn relevant data

and save it in the learning data file. Normally, the robot can automatically learn the

required relevant information by running the instruction once, so the robot does not

need to stop to learn again when the instruction is repeatedly called later. The total

number of times the robot stops to learn during the same motion does not exceed 3.

4) If SLReset, the robot will be forced to stop for about 1.5 seconds after reaching the

destination and automatically learn relevant information and save it in the learning

data file.

5) If the vibration suppression effect cannot meet the requirements after self-learning

using the SLOn parameter, the SLReset parameter can be used, which is equivalent

to forcing self-learning every time the motion is executed. The SLReset parameter is

generally only used during debugging. After debugging and confirming that the

vibration meets the requirements, it is necessary to change SLReset to SLOn or

SLOff.

6) For motions with good vibration conditions, it is best not to mark them (default or

SLOff), otherwise the robot may stop to perform self-learning when it first reaches

the marked position.

7) In general, the more significant the vibration, the better the likelihood of

self-learning effect. However, if the vibration is too significant, it may lead to

incorrect data being learned.

8) For a motion instruction with SLOn and SLReset parameters, it is necessary to wait

215

for the instruction to be executed before the subsequent instructions can be executed.

Therefore, for the motion corresponding to such motion instruction, the transition

parameters and NWait parameter will be forcibly invalidated.

Example 1) In the following program, after the SLDataClear All instruction is executed, all

historical self-learning data will be cleared. Therefore, regardless of whether self-learning

has been performed before, self-learning will be performed when the robot moves to

points LP[1] and LP[2]. For the motion to point LP [2], the robot continues self-learning

before the program jumps out of the for loop. Because the self-learning parameter is

SLOff or default, the robot will not perform self-learning when moving to points LP[0]

and LP[3]. Because the SLOn and SLReset parameters are present, neither the motion to

LP[1] nor the motion to LP[2] will have a transitional effect.

SLDataClear All;

 For B[0]=0,B[0]<10,Step[1]

 Movj LP[0],V[30],Z[0],SLOff;

 Movj LP[1],V[30],Z[CP],SLOn;

 Movj LP[2],V[30],Z[CP],NWait,SLReset;

 Movj LP[3],V[30],Z[0];

 Set Out[1];

 SLVSMode MidLevel;

EndFor;

Note

7.12.2.3 SLDataClear

Name SLDataClear

Function Clears the data that has been learned

Description This instruction is used to clear learned data. When it is called, the robot needs to perform

self-learning again.

Format SLDataClear ClearPara;

Parameter ClearPara includes All, Current, and Designated Position, which respectively represent the

erasure of all learning data and the erasure of learning data at the current position of the

robot, and erasure of learning data at the designated position of the robot. Currently, only

Current is supported.

Control

permission

Not supported for APIs

Scope of

instruction

Only active in main task, not supported in multitasking

Detailed

description

1) When SLDataClear All is called, all learning data from previous learning will be

restored to factory defaults.

2) If the robot’s self-learning effect is still poor after increasing the global motion speed

(the robot’s vibration is visible to the naked eyes), SLDataClear All can be called to

clear all historical learning data, and then self-learning can be re-started, or the robot

can be moved to a position with poor self-learning effect and SLDataClear Current

216

can be called to clear the learning data of the current position, and then re-start

self-learning at that position.

3) If the weight or inertia of the end load of the robot changes significantly (more than

30%), SLDataClear All needs to be called to clear all historical learning data before

learning again.

4) If you need to clear the historical learning data and re-learn, you generally only need

to call the instruction SLDataClear All at the beginning of the program, and only

need to call it once.

5) The SLDataClear All instruction is generally only used during debugging. After

debugging is completed, it needs to be deleted or commented out. Otherwise, the

learning data that has been learned from each SLDataClear All execution will be

completely cleared, resulting in vibration suppression failure and the robot needs to

learn again.

Example 1) In the following program, after the SLDataClear All instruction is executed, all

historical self-learning data will be cleared. When the motion instruction with SLOn

or SLReset parameter is executed later, self-learning will be performed again, that is,

self-learning will be performed upon the first execution of Movj LP[1], V[30], Z[0],

SLON.

SLDataClear All;

 For B[0]=0,B[0]<2,Step[1]

 Movj LP[0],V[30],Z[0];

 Delay T[1];

 Movj LP[1],V[30],Z[0],SLOn;

 Delay T[1];

 SLVSMode MidLevel;

EndFor;

Note

7.12.3 Backup, loading, recovery, and clearing of self-learning

data

As shown in the figure below, you can configure the self-learning vibration suppression function

in Set > Motion > AdvOption > SelfVibra interface. The interface contains 4 options, including

Data Backup, Load Data, Reset Data, and Clear Data.

217

A. Backing up data

1. Function:

Save the self-learning data in the robot controller to a learning data file and store it to the

computer's local disk.

2. Operation method:

1) Click Data Backup.

2) Select the save path and file name.

218

3) Click Save.

3. Note:

1) For the backup operation, the default save path is the last saved path. The default file name

contains the project name and time information, which makes it convenient for users to

manage the learning data file.

B. Loading data

1. Function:

Loads the locally stored learning data file into the robot controller.

2. Operation method:

1) Click Load Data.

2) The user will be prompted whether to load the learning data. Click Yes to load the learning

data, or No to terminate the current operation.

219

3) Then, select the load file in the pop-up dialog. The original learning data will be overwritten

once the data is loaded successfully.

3. Note:

1) When the learning data is loaded, the file type, model, software version, and checksum

information is verified. If the model and software version do not match the controller, the

user will be prompted that the loading has failed.

2) If the user changes the content of the learning data file, the user will also be prompted that

the loading has failed.

C. Restoring data

1. Function:

220

Restores all self-learning data in the controller to factory defaults.

2. Operation method:

1) Click Reset Data.

2) The user will be prompted whether to restore the learning data. Click Yes to restore the

learning data, or No to terminate the current operation.

3. Note:

1) After the learning data is restored to factory defaults, since there is no valid learning data, the

self-learning vibration suppression does not actually take effect. The robot needs to perform

self-learning again before vibration suppression takes effect.

2) When the system is flashed, the learning data is restored to factory defaults. When the system

is upgraded, the learning data file will not be automatically upgraded. If the previous and

subsequent versions of the learning data files are incompatible, the user will be prompted to

upgrade the learning data file.

D. Clearing data

1. Function:

Clears the self-learning data for the current position of the robot in the controller.

2. Operation method:

1) Click Clear Data.

2) The user will be prompted whether to clear the learning data. Click Yes to clear the learning

data, or No to terminate the current operation.

221

3) If you check Show Clear, the Clear Data button will be displayed in the toolbar on the right

side of the program running window to facilitate the user to clear the learning data of the

current position.

7.12.4 Example

RapidMove(All, OFF); //Avoid significant vibration of the robot after the optimal trajectory is

turned on, which may result in poor learning performance

 VelSet 100;

 SetAccRamp(100,100);

 SLDataClear All; //Place this instruction before motion instructions to clear learning data before

motion is executed

 For B[0]=0,B[0]<2,Step[1]

 Movj LP[1],V[30],Z[0];

 Movj LP[2], V[30], Z[CP], SLOn; //The robot stops when it reaches the current motion

instruction and automatically performs self-learning

 Delay T[1];

 Movl LP[3], V[30], Z[0], SLOn; //The robot stops when it reaches the current motion

222

instruction and automatically performs self-learning

 Delay T[1];

 SLVSMode MidLevel;

 EndFor;

1) After the SLVSNode MidLevel instruction is executed for the first for loop, the self-learning

vibration suppression mode is set to the medium level mode. If effective data has been learned,

the second for loop will not perform self-learning again. The vibration of the two motions

Movj LP[2] and Movl LP[3] is effectively suppressed.

2) For motion instructions with SLOn or SLReset parameter, the transition parameter is

automatically shielded. Therefore, it is best to remove the SLOn parameter after it is

confirmed that the vibration suppression effects meet the on-site requirements.

3) To determine whether vibration has been effectively suppressed, you can add a delay

instruction to the instruction that require vibration suppression, which can make it easier to

determine whether the suppressed vibration can meet on-site requirements.

7.13 Releasing Dynamic Brake

For a SCARA robot, you can move its axes easily by turning off the Dynamic Brake switch after

the robot is disabled.

Note:

1. This feature is only applicable to the J1, J2, J4 axes.

2. Only when the robot is disabled can the dynamic brake switch be turned on or off.

3. The dynamic brake switch is always on when the robot is enabled.

4. When the robot controller is re-powered, the dynamic brake switch will be reset to ON.

223

Appendix 1: Robot Alarms and Handling

Method

Description:

1. Description of multitasking alarms

Multitasking alarms comply with the following rules.

Only the main task alarms are listed in the following alarm list.

Alarm

Code
Description Cause Solution

0x0001
Initialization failed (reboot

required after fixing error)

1.PF file creation or opening

failed.

2.PF file parsing failed.

Restart and check if it returns to

normal. If not, please contact the

manufacturer.

0x0002

Teach pendant

communication module

scheduling failure (reboot

required after fixing error)

1. The teach pendant thread was

not started properly.

Restart and check if it returns to

normal. If not, please contact the

manufacturer.

0x0003

Vision communication

module scheduling failure

(reboot required after fixing

error)

1. The vision communication

thread was not started properly.

Restart and check if it returns to

normal. If not, please contact the

manufacturer.

0x0004

Internal communication

module scheduling failure

(reboot required after fixing

error)

1. The DSP communication

thread was not started properly.

Restart and check if it returns to

normal. If not, please contact the

manufacturer.

0x0005

Play/Teach function module

scheduling failure (reboot

required after fixing error)

1. The ARM scheduling thread

was not started properly.

Restart and check if it returns to

normal. If not, please contact the

manufacturer.

0x0006 Data interpolation module 1. The interpolation thread was Restart and check if it returns to

224

scheduling failure (reboot

required after fixing error)

not started properly. normal. If not, please contact the

manufacturer.

0x0007

Failed to open EtherCAT

communication (reboot

needed after fixing error)

1. Configuration file error.

2. EtherCAT slave does not

match the system

configurations.

Step 1: Check if the EtherCAT

connection status on the

monitoring interface is abnormal.

Step 2: Contact the manufacturer.

0x0008
Failed to open parameter

configuration file

1. Failed to open parameter

configuration file.

2. Parameter configuration file

is corrupted.

System configuration file error,

please contact the manufacturer.

0x0009 Decoding error Program syntax error

Check the program for syntax

errors. Refer to the message bar

for detailed error messages.

0x000A
Unreasonable program line

number

The instruction line number

sent by the teach pendant is out

of range.

Check whether the line where the

blue cursor is located is out of the

program range, or reselect the

start line number.

0x000B Wait instruction timeout
Wait instruction has waited

longer than set time

1. Check the Wait condition.

2. Reset the wait time for the Wait

instruction.

0x000C Error reading instructions

1. The program file is

corrupted.

2. The program file does not

conform to specifications.

1. Re-write the program file.

2. Check that the program file

conforms to the specifications.

0x000D 0
The nesting call of the

subprogram exists.

Check if the Call instruction is

nested to subroutines.

0x000E
Motion command decoding

error

Motion command decoding

error
Check the teaching program.

0x000F
Configuration file operation

failed

1. Failed to save the

configuration file.

2. Failed to recover the

configuration file.

1. Restore factory defaults and

power on the system again.

2. Power off and restart.

0x0011
Failed to create axis

interpolation thread

1. Failed to create the

interpolation thread.

2. The internal testing function

is not open.

1. Replace the hardware.

2. Replace the software.

0x0012 Jump instruction failed
1. Point data calculation error in

the jump instruction.
Reselect teaching points.

0x0013

IRLink initialization failed

(reboot required after fixing

error)

1. The number of IRLink slaves

is incorrectly configured.

2. The order of IRLink slaves is

incorrectly configured.

Reconfirm the IRLink

configurations.

0x0014
Failed to save the teaching

program

The memory card is loose or

cannot be identified.
Check the memory card.

225

0x0015

Internal communication error

between the system and the

motion module

DSP software running error Power on the controller again.

0x0016 Internal enable error DSP software running error Power on the controller again.

0x0017
System motion module

program running error
DSP software running error Power on the controller again.

0x0018 Homing failed Homing failed Perform homing again.

0x0019 Enable missing
The enablement of the running

state is lost.

Check whether the system is in

enabled state.

0x001A
Servo parameter error

detected

The set parameters do not

match the actual servo

parameters.

Change the servo parameters

using the servo panel or servo

background according to the

factory parameters. If the actual

parameters are inconsistent with

the factory parameters, replace

the motor or servo.

0x001B
Motion status acquisition

abnormality

1.The internal processing of the

system is busy.

2. The system motion firmware

is damaged.

1. Power off and restart the

system again.

2. Contact the manufacturer.

0x001C

Configuration unsuccessful,

PLC configuration conflicts

with actual controller model

The PLC configuration conflicts

with the actual controller

model.

Check that the PLC configuration

parameters match the actual

controller model.

0x001D

Old version PLC

configuration, some functions

are affected

Old version PLC configuration

The secondary development

version number and the robot

secondary development version

number do not match, please

contact the manufacturer.

0x001E

Parameter verification Error

(reboot required after fixing

error)

When setting servo position on

arm-dsp channel, the setup

(planned position) and the

retrieved value (encoder

feedback position) are not

consistent with each other.

System failure, please contact the

manufacturer.

0x001F

Position synchronization error

(reboot required after fixing

error)

Error synchronizing controller

to servo position

1. Power off and restart the

system again.

2. Contact the manufacturer.

0x0020
Robot not allowed to move

during startup

The robot is in motion when it

is started.

Wait for the robot to stop before

starting it.

0x0021

Bad parameter passed in

(reboot required after fixing

error)

Bad parameter passed in
Check the basic parameter

settings of the system.

0x0022 Instruction line not found
The input line number is out of

range.
Select the instruction line to run.

226

0x0023 No point data found No point is defined. Check whether a point is defined.

0x0024 Inverse kinematic error
This point is a singular point of

the robot.

Modify the coordinate of this

point.

0x0025
Point coordinate system

parameter error

The coordinate system values

exceed the range.
Get a point again.

0x0026

Line or arc instructions do not

allow sudden changes in arm

parameters

A sudden change in the arm

parameter of the MOVL and

MOVC instruction is not

allowed.

Get a new point or add a joint

transition point.

0x0027 V parameter out of range
The V parameter exceeds the

range (1-100).
Modify the V parameter.

0x0028 Z parameter out of range
The Z parameter exceeds the

range (0-5).
Modify the Z parameter.

0x0029 TOOL parameter out of range
The TOOL parameter exceeds

the range (0-15).
Modify the Tool parameter

0x002A USER parameter out of range
The User parameter exceeds the

range (0-15).
Modify the User parameter.

0x002B ACC parameter out of range
The ACC parameter exceeds the

range (1-100).
Modify the Acc parameter.

0x002C Until parameter out of range
The I/O number exceeds the

range (0-255).
Modify the Until In parameter.

0x002D Pallet parameter error
Pallet (PNo, i, j, k), PNo, i, j, k

greater than or equal to 0.
Modify the Pallet parameter.

0x002E Pallet not defined No pallet number is defined. Define the pallet before using it.

0x002F Repeat parameter error
The Repeat parameter exceeds

the range.
Modify the Repeat parameter.

0x0030 Decoding error
Error in instruction parsing

during operation

Check the running instructions

and modify them according to the

prompts.

0x0031

Error in inverse kinematic

calculation for jog motion in

base coordinate system

The destination for jog motion

in the base coordinate system

exceeds the running space or is

located at a singularity.

1. Check the step of jog motion.

2. Check the direction of jog

motion.

0x0032

Error in inverse kinematic

calculation for jog motion in

tool coordinate system

The destination for jog motion

in the tool coordinate system

exceeds the running space or is

located at a singularity.

1. Check the step of jog motion.

2. Check the direction of jog

motion.

0x0033

Error in inverse kinematic

calculation for jog motion in

user coordinate system

The destination for jog motion

in the user coordinate system

exceeds the running space or is

located at a singularity.

1. Check the step of jog motion.

2. Check the direction of jog

motion.

0x0034
Tool load parameter setting

exceeds limit

The tool load parameter setting

value is out of range.
Modify the tool load parameters.

0x0035 Work object load parameter The work object load parameter Modify the work object load

227

setting exceeds limit setting is out of range. parameters.

0x0036
Arm load parameter setting

exceeds limit

The arm load parameter setting

value is out of range.
Modify the arm load parameters.

0x0038 Parameter setting error
Parameter setting is out of

range.

Check that the parameter setting

is within the range.

0x0039

API initialization failed

(reboot required after fixing

error)

The API communication thread

was not started properly.

1. Power off and restart the

system again.

2. Contact the manufacturer.

0x004B Failed to mount memory card Failed to mount memory card

1. Power off and restart the

system again.

2. Remove the memory card and

install it again.

3. Replace the memory card.

0x004C
Duplicate port number or IP

address

The port number or IP address

is duplicated.

Replace the port number or IP

address.

0x004D Ethernet communication error Ethernet communication error
Check the communication line

and retransmit the data.

0x004E Network interference
The controller is connected to

multiple Ethernet terminals.

Check whether multiple terminals

are connected to the same

controller.

0x004F Failed to open vision port Vision instruction error Check the vision instruction.

0x0050 Memory card not recognized

1. Memory card not inserted

into the controller.

2. Poor memory card contact.

3. Memory card damaged.

4. There is a problem with

initialization of the memory

card upon power on.

Check the system hardware;

power off and restart the system.

0x0051 EtherCAT disconnected EtherCAT is disconnected. Check EtherCAT communication.

0x0052 IRLink disconnected IRLink is disconnected. Check IRLink communication.

0x0053
Too short interval between

start and pause

The interval between start and

pause is too short.
Restart

0x0054
Failed to acquire vision

characteristic values

Failed to acquire vision

characteristic values while

executing the instruction.

Obtain vision characteristic

values again after checking vision

processing.

0x0055 Decoding not completed

The program may have

instruction symbols or syntax

error.

Check the syntax of instructions

used in the editing program.

0x0056 Robot type error
The robot has no related type

firmware.

Restart the system or check the

DSP firmware.

0x0057

FPGA firmware loading

failed (reboot required after

fixing error)

FPGA firmware error or startup

exception

Restart the system or check the

FPGA firmware.

0x0058 DSP firmware loading failed DSP firmware error or startup Restart the system or check the

228

(reboot required after fixing

error)

exception DSP firmware.

0x0059
System status error upon

mode switching

When the robot is switched to

teach or play mode, it is

detected that the project has not

been compiled properly or the

configuration file has not been

completed properly.

Internal system error, please

contact the manufacturer.

0x005A I/O parameter setting error I/O parameter setting error

Check that the range of I/O

parameters set in the instruction is

reasonable.

0x005B IP address error
IP address acquisition or setting

error
Check network line connection.

0x005C

The teach pendant does not

have access to IRLink

configuration.

IRLink has already been

configured on the secondary

development platform.

Use the current configuration or

cancel the configuration on the

secondary development platform.

0x005D
Shared memory mapping

error

Error in mapping shared

memory between RC and PLC.
Contact the technical support.

0x005E (User-defined alarm 0)
The system triggered

user-defined alarm 0.
Check the user alarm 0.

0x005F (User-defined alarm 1)
The system triggered

user-defined alarm 1.
Check the user alarm 1.

0x0060 (User-defined alarm 2)
The system triggered

user-defined alarm 2.
Check the user alarm 2.

0x0061 (User-defined alarm 3)
The system triggered

user-defined alarm 3.
Check the user alarm 3.

0x0062 (User-defined alarm 4)
The system triggered

user-defined alarm 4.
Check the user alarm 4.

0x0063 (User-defined alarm 5)
The system triggered

user-defined alarm 5.
Check the user alarm 5.

0x0064 (User-defined alarm 6)
The system triggered

user-defined alarm 6.
Check the user alarm 6.

0x0065 (User-defined alarm 7)
The system triggered

user-defined alarm 7.
Check the user alarm 7.

0x0066 (User-defined alarm 8)
The system triggered

user-defined alarm 8.
Check the user alarm 8.

0x0067 (User-defined alarm 9)
The system triggered

user-defined alarm 9.
Check the user alarm 9.

0x0068 (User-defined alarm 10)
The system triggered

user-defined alarm 10.
Check the user alarm 10.

0x0069 (User-defined alarm 11)
The system triggered

user-defined alarm 11.
Check the user alarm 11.

0x006A (User-defined alarm 12)
The system triggered

user-defined alarm 12.
Check the user alarm 12.

229

0x006B (User-defined alarm 13)
The system triggered

user-defined alarm 13.
Check the user alarm 13.

0x006C (User-defined alarm 14)
The system triggered

user-defined alarm 14.
Check the user alarm 14.

0x006D (User-defined alarm 15)
The system triggered

user-defined alarm 15.
Check the user alarm 15.

0x006E Interference area 0 alarm
The robot is located in the

interference area 0.

Check the robot position and

setting value of the interference

area 0.

0x006F Interference area 1 alarm
The robot is located in the

interference area 1.

Check the robot position and

setting value of the interference

area 1.

0x0070 Interference area 2 alarm
The robot is located in the

interference area 2.

Check the robot position and

setting value of the interference

area 2.

0x0071 Interference area 3 alarm
The robot is located in the

interference area 3.

Check the robot position and

setting value of the interference

area 3.

0x0072 Interference area 4 alarm
The robot is located in the

interference area 4.

Check the robot position and

setting value of the interference

area 4.

0x0073 Interference area 5 alarm
The robot is located in the

interference area 5.

Check the robot position and

setting value of the interference

area 5.

0x0074 Interference area 6 alarm
The robot is located in the

interference area 6.

Check the robot position and

setting value of the interference

area 6.

0x0075 Interference area 7 alarm
The robot is located in the

interference area 7.

Check the robot position and

setting value of the interference

area 7.

0x0076 Interference area 8 alarm
The robot is located in the

interference area 8.

Check the robot position and

setting value of the interference

area 8.

0x0077 Interference area 9 alarm
The robot is located in the

interference area 9.

Check the robot position and

setting value of the interference

area 9.

0x0078 Interference area 10 alarm
The robot is located in the

interference area 10.

Check the robot position and

setting value of the interference

area 10.

0x0079 Interference area 11 alarm
The robot is located in the

interference area 11.

Check the robot position and

setting value of the interference

area 11.

0x007A Interference area 12 alarm
The robot is located in the

interference area 12.

Check the robot position and

setting value of the interference

230

area 12.

0x007B Interference area 13 alarm
The robot is located in the

interference area 13.

Check the robot position and

setting value of the interference

area 13.

0x007C Interference area 14 alarm
The robot is located in the

interference area 14.

Check the robot position and

setting value of the interference

area 14.

0x007D Interference area 15 alarm
The robot is located in the

interference area 15.

Check the robot position and

setting value of the interference

area 15.

0x007F
Data streaming mode not

turned off

The system is in data streaming

mode.
Turn off the data streaming mode.

0x0080 Emergency stop alarm
The emergency stop button is

pressed.

Release the emergency stop

button to clear the alarm.

0x0081
No reverse movement data

found

The reverse movement data has

been executed.
Terminate the reverse movement.

0x0082 Error closing port
The port number is out of range

or the port is not opened.
Check the port number.

0x0083 TCP port overflow
Peripheral TCP application

connections are excessive.
Close useless TCP connections.

0x0084
API communication

processing error

The API channel is occupied by

other applications for a long

time or has been blocked due to

faults in previous API

application processing.

Close or reduce the previous API

application process.

0x0085 Arc trajectory uncontrollable The arc start point is uncertain.

Add other motion instructions

before and after the arc

instruction.

0x0086 Version mismatch

The teach pendant version does

not match the controller

version.

Match the teach pendant and

controller version.

0x0089 IP conflict IP settings conflict. Reset the IP address.

0x008A
File system not identified in

the memory card.

The file system on the memory

card is incorrect.

Reformat the memory card on the

teach pendant.

0x008B
Servo parameter reading

failed

The controller fails to read

servo parameters.

Optimize the connection between

the servo and the controller.

0x008C Parameter out of range Parameter out of range
Set the parameters within the

range.

0x008D Illegal I/O configuration
Configured I/O is controlled by

a PLC or does not exist.
Reset I/O.

0x008E Illegal I/O setup operation.
The set I/O lacks the I/O

control.
Check the I/O control.

0x008F I/O does not exist
Sending screw locking startup

parameters to the servo fails.

1. Check that the electric

screwdriver servo firmware

231

matches with the controller.

2. Clear parameters and restart the

system.

0x0090 Failed to start tightening
Sending screw locking startup

parameters to the servo fails.

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

system.

0x0091
Failed to stop electric

screwdriver

Sending screw locking stop

parameters to the servo fails.

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

system.

0x0092 Screw status detection failed
Reading screw locking status

from the servo fails.

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

system.

0x0093
Failed to read screw

tightening parameters

Reading screw locking setting

parameters from the servo fails.

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

system.

0x0094
Failed to write screw

tightening parameters

Writing screw locking setting

parameters to the servo fails.

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

system.

0x0095 Screw data display failed
Obtaining screw locking display

data from the servo fails.

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

system.

0x0096 Failed to reset lock count
Writing a screw locking counter

clearing flag to the servo fails.

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

system.

0x0097
Failed to get thread for servo

error

Failed to get thread for servo

error
Restart the robot.

0x0098 Failed to start loosening
Sending screw removal startup

parameters to the servo fails

1. Check that the electric

screwdriver servo firmware

matches with the controller.

2. Clear parameters and restart the

232

system.

0x0099
Failed to write screw

loosening parameters

Writing screw removal setting

parameters to the servo fails.

Check the electric screwdriver

servo firmware matches with the

controller.

0x009A
Failed to read screw

loosening parameters

Obtaining screw removal

setting data from the servo fails.

Check the electric screwdriver

servo firmware matches with the

controller.

0x009B
Fallback point setting out of

range

Fallback point setting out of

range

Set the fallback point for screw

loosening within the range.

0x00A0
TCP port for reading and

writing is not open
The TCP port is not open.

Make sure that the TCP port is

properly connected.

0x00A1
Conveyor vision port not

closed

Normal vision is used without

closing dynamic vision.

Close the dynamic vision by

instruction CNVIOSION OFF.

0x00A2
Conveyor error or camera

pixel error

The conveyor number is

incorrect or the transfer data

type of the camera is incorrect.

Reset the conveyor number or

camera data transfer type.

0x00A3
Dynamic vision coordinate

conversion error

Error converting dynamic

vision pixels to camera

coordinate system.

Check that the pixels sent from

vision equipment are correct,

otherwise the camera needs to be

recalibrated.

0x00A4
No reverse movement data

found

There is no reverse movement

data.
Clear the error.

0x00A5
Lack of motion instructions

before arc instruction

The instruction before arc

motion is not Movj or Movl

(This appears in only the

single-step teaching.)

Ensure that the instruction before

the arc instruction is Movj or

Movl.

0x00A6 Specified file not found
The file does not exist or the

file path is incorrect.

Check that the file exists or the

file path is correct.

0x00A7
Error saving diagnostic

information

The relevant files do not exist

during the process of saving

diagnostic information.

Internal system error, please

contact the manufacturer.

0x00A8
Error exporting diagnostic

information

The relevant files do not exist

during the process of exporting

diagnostic information.

Check that the USB device is

normal; otherwise it is an internal

system error, please contact the

manufacturer.

0x00A9 Excessive number of files

There are too many files

(including folders) in the

current folder.

Delete excessive files. Ensure the

number of files+folders in a

single folder is not greater than

100.

0x00AA
Pause buffer data sending

failure

Failed to send buffer data when

going from pause to start.
Restart from stop.

0x00AB
Multitasking number does not

exist

Multitasking number is written

incorrectly or in the wrong

range.

Check the task number.

233

0x00AC
Multitasking number

incorrect or occupied

The multitasking number is

incorrect or has been occupied.
Check the task number.

0x00AD Multitasking creation failed

The system is busy; the task is

already running or has been

restarted; task 0 was started

under non-remote I/O

permissions.

(1) Re-run the XQT command to

check that it runs normally.

(2) Stop the current multitasking

and start it again.

(3) Switch to remote I/O

permissions and restart task 0.

0x00AE
Failed to open or close the

position latching function.

The hardware is not connected

or the servo is not ready.

Check the hardware connections

and servo configuration.

0x00AF
Failed to call the controller

debug function

The controller debug function

module failed.

Check that the configuration of

the controller debug switch is

correct.

0x00B0 Failed to set load parameters
The system is busy or the

parameter is out of range.
Reset or check the parameter.

0x00B1
Serial port number or baud

rate error

1. The input serial port number

is out of range.

 2. With the serial port not

closed, another serial port with

the same number but different

baud rate is opened.

1. Check that the input serial port

number is within the range.

2. Close the serial port via the

close instruction and open a serial

port with new baud rate via the

close instruction.

0x00B2
Modbus parameter read-write

error

Modbus read-write execution

failed
Update the software version.

0x00B3 Failed to modify P variable

Failed to open or write the

program file where the P

variable is located.

Re-modify it or update the

software version.

0x00B4

Vision communication

exception: Client and server

connection error

The communication between

the robot and the target device

has been interrupted.

Reestablish the connection.

0x00B5

Vision Communication

Exception: Robot sending

data error

The network was disconnected

while the robot was sending

data or there was an error while

transmitting data.

Check that the network

connection is normal.

0x00B6
Pose correction calculation

error

Wrong tool was selected or the

alignment position is a

singularity.

1. Check that the tool selection is

correct.

2. Check that the position that the

robot needs to align with is not a

singularity.

0x00B7
Error in switching station

program in Modbus mode

In Modbus mode, the station

program is switched when the

current station program is not

stopped.

Set the current station program to

the stop state, and then switch the

station program.

0x00B8 System power-down error The system suddenly loses Clear alarm

234

power during operation.

0x00B9
Illegal InoRobShop axis

configuration

The number or type of axes

configured by InoRobShop does

not match the actual condition.

1. Reconfigure the correct axis in

InRobShop.

2. In InoTeachPad, go to Set >

System > Others > Clear

PLC-CFG and clear the PLC

configuration (Note: The built-in

PLC program will also be

cleared.)

0x00BA
Error selecting multiple

programs in Modbus mode

In Modbus mode, multiple

station programs are selected

simultaneously.

Select only one program.

0x00BB

Network disconnected during

motion in teach mode under

teach pendant control

When the robot is under the

control of teach pendant and

operating in teach mode, it is

detected that the network

connection between the teach

pendant and the controller is

disconnected.

Clear the alarm after reconnecting

the teach pendant and the

controller.

0x00BC
The read-write serial port is

not opened.

The read-write serial port is not

opened.

Open the serial port by

configuring the controller

parameter or by executing the

open instruction.

0x00BD

P variable cannot be changed

before a program is selected

or when the program is

running.

P variable cannot be changed

before a program is selected or

when the program is running.

Select a program or make sure

that the robot is stopped.

0x00BE

Client-server communication

timeout, network connection

lost

Client-server communication

timeout, network connection

lost

Check the network connection.

0x00BF
Peer server shutdown,

network connection lost

Peer server shutdown, network

connection lost
Open the server.

0x00C0

J1 servo parameter error

detected (reboot required after

fixing error)

One or more servo parameters

of J1 are wrong.

Reboot the robot after modifying

the wrong servo parameter values.

0x00C1

J2 servo parameter error

detected (reboot required after

fixing error)

One or more servo parameters

of J2 are wrong.

Reboot the robot after modifying

the wrong servo parameter values.

0x00C2

J3 servo parameter error

detected (reboot required after

fixing error)

One or more servo parameters

of J3 are wrong.

Reboot the robot after modifying

the wrong servo parameter values.

0x00C3

J4 servo parameter error

detected (reboot required after

fixing error)

One or more servo parameters

of J4 are wrong.

Reboot the robot after modifying

the wrong servo parameter values.

235

0x00C4

J5 servo parameter error

detected (reboot required after

fixing error)

One or more servo parameters

of J5 are wrong.

Reboot the robot after modifying

the wrong servo parameter values.

0x00C5

J6 servo parameter error

detected (reboot required after

fixing error)

One or more servo parameters

of J6 are wrong.

Reboot the robot after modifying

the wrong servo parameter values.

0x00CB
Robot software version and

servo version do not match

Robot software version and

servo version do not match

Upgrade the servo version to

match the robot software.

0x00D0
Failed to set servo

acceleration parameter

Failed to set servo acceleration

parameter
Check the servo module status.

0x00D1
Failed to restore system

configuration file

Failed to restore configuration

file.

Re-save the configuration file or

restart the robot.

0x00D2

P-variable not allowed to be

modified during program

execution in play mode or

during program execution

P-variable was modified in play

mode or during program

execution under the remote

Modbus control.

Stop the program and switch to

teach mode before modifying the

P variable.

0x00D3 Failed to modify P variable

Failed to modify P variable in

memory or failed to modify P

variable in file.

1. Try to modify again.

2. Check that the GP variable to

be modified exists in the file.

3. Update the software version.

4. Contact the manufacturer.

0x00D4
Configured I/O program does

not exist

Configured I/O program does

not exist

Check that the configured I/O

program file exists.

0x00D5
The length of data sent by the

peer device exceeds the limit.

The length of the data sent by

the peer device exceeds the

limit when communicating via

socket or serial port.

Reduce the length of data sent by

the peer.

0x00D6

The BRD variables entered

under Modbus control are out

of range.

The BRD variables entered

under Modbus control are out of

range.

Check the range of BRD values

set via Modbus.

0x00D7
The calculated P value is

illegal.
Internal system error

1. Try to modify the P variable

again.

2. Contact the manufacturer.

0x00D8
Input value of P variable is

illegal.

The arm parameter, coordinate

system, user number, or tool

number of the entered P

variable is illegal.

Check the arm parameter,

coordinate system, user number,

or tool number of the entered P

variable.

0x00D9
GetCurPoint instruction failed

to get current location

GetCurPoint instruction failed

to get current location

Reduce the frequency of

GetCurPoint instruction calls as

appropriate.

0x00DA

Start position deviates too

much from the motion

interrupt position

Under the remote control, the

motion was interrupted in play

mode. When the motion was

restarted, it was detected that

1. Manually move the robot to the

interrupt position.

2. Return to the start line of the

program and run the program

236

the difference between the

current position and the

interrupt position exceeds the

following thresholds: SCARA

robot: 5° 5° 500° 3° (any joint

angle); 6-axis robot: 5° 5° 5° 5°

5° 5° 5° 5°.

again.

0x00DB Failed to clear trajectory data Failed to clear trajectory data Contact the manufacturer.

0x00DC
Failed to write servo

parameters

Failed to write the servo

parameters into the controller.

Optimize the connection between

the servo and the controller.

0x00DD
Direct motion point not

reachable

1. The target point of direct

motion exceeds the limit.

2, The target point of direct

motion is a singular point.

1. Check the range of the target

point and whether the target point

is a singular point.

0x00DE
Encoder multi-turn value has

been cleared, please restart.

The encoder multi-turn value is

too large and is cleared when

the encoder is zeroed. A reboot

is required.

Restart the controller.

0x00E0
SN mismatch between drive

and encoder (motor)

1. The encoder voltage is too

low.

2. The battery is not connected

during power-off.

1. Replace the encoder cable;

replace a new battery with

matching voltage.

2. Set the parameter "Absolute

encoder reset enable" to 1 to clear

the fault.

0x00E1 Bus undervoltage

1. The power supply of the

main circuit is unstable or

power failure occurs.

2. Instantaneous power failure

occurs.

3. The power supply voltage

drops during operation.

4. Controller fault.

1. Increase the capacity of the

power supply.

2. Increase the capacity of the

power supply.

3. Increase the capacity of the

power supply.

4. Replace the controller.

0x00E2 Bus overvoltage

1. The voltage input to the main

circuit is too high.

2. The power supply is unstable

or affected by lightning.

3. The motor is in abrupt

deceleration status and the

maximum braking energy

exceeds the energy absorption

value.

4. The bus voltage sampling

value deviates greatly from the

measured value.

1. Replace or adjust the power

supply according to the following

specifications: 220V-240V±10%

(198V to 264V).

2. Connect a surge protection

device and then switch on the

main circuit and control circuit

power supplies again. If the fault

persists, replace the servo drive.

3. After confirming the input

voltage of the main circuit is

within the specified range,

237

5. Controller fault. increase the

acceleration/deceleration time if

the operating conditions allow.

4. Contact the technical support.

5. Replace the controller.

0x00E3 Main circuit open
Mains power supply is unstable

with voltage fluctuations.

Check if the power supply system

is stable and if there are

fluctuations in the voltage range.

0x00E4
Controller and drive power

undervoltage
Controller fault Replace the controller.

0x00E5
Controller and drive power

overvoltage
Controller fault Replace the controller.

0x00E6
Abnormal brake and I/O

power supply
Controller fault Replace the controller.

0x00E7 System power detection error

A power loss was detected by

the servo module, but not by the

controller module, and the

power detection module is

faulty.

Ensure the stability of the power

supply and restart the system.

0x00F0 J1 axis encoder battery alarm

1. The encoder voltage is too

low.

2. The battery is not connected

during power-off.

1. Replace the encoder cable;

replace a new battery with

matching voltage.

2. Set the parameter "Absolute

encoder reset enable" to 1 to clear

the fault.

0x00F1 J2 axis encoder battery alarm

1. The encoder voltage is too

low.

2. The battery is not connected

during power-off.

1. Replace the encoder cable;

replace a new battery with

matching voltage.

2. Set the parameter "Absolute

encoder reset enable" to 1 to clear

the fault.

0x00F2 J3 axis encoder battery alarm

1. The encoder voltage is too

low.

2. The battery is not connected

during power-off.

1. Replace the encoder cable;

replace a new battery with

matching voltage.

2. Set the parameter "Absolute

encoder reset enable" to 1 to clear

the fault.

0x00F3 J4 axis encoder battery alarm

1. The encoder voltage is too

low.

2. The battery is not connected

during power-off.

1. Replace the encoder cable;

replace a new battery with

matching voltage.

2. Set the parameter "Absolute

encoder reset enable" to 1 to clear

the fault.

0x00F4 J5 axis encoder battery alarm 1. The encoder voltage is too 1. Replace the encoder cable;

238

low.

2. The battery is not connected

during power-off.

replace a new battery with

matching voltage.

2. Set the parameter "Absolute

encoder reset enable" to 1 to clear

the fault.

0x00F5 J6 axis encoder battery alarm

1. The encoder voltage is too

low.

2. The battery is not connected

during power-off.

1. Replace the encoder cable;

replace a new battery with

matching voltage.

2. Set the parameter "Absolute

encoder reset enable" to 1 to clear

the fault.

0x00F6
J1 axis encoder

overtemperature

The encoder temperature is too

high.
Cooling

0x00F7
J2 axis encoder

overtemperature

The encoder temperature is too

high.
Cooling

0x00F8
J3 axis encoder

overtemperature

The encoder temperature is too

high.
Cooling

0x00F9
J4 axis encoder

overtemperature

The encoder temperature is too

high.
Cooling

0x00FA
J5 axis encoder

overtemperature

The encoder temperature is too

high.
Cooling

0x00FB
J6 axis encoder

overtemperature

The encoder temperature is too

high.
Cooling

0x00FC
Failed to set servo

acceleration parameter

1. The servo SDO channel is

not smooth.

2. The servo has a hardware or

software fault.

1. Try to save the acceleration

parameters again.

2. Contact the manufacturer to

update the servo software.

0x00FD
Failed to restore system

configuration file

The file system is corrupted, or

the internal channel of the

system is damaged.

Try to save the acceleration

parameters again or restart the

robot.

0x1001 Duplicate directory
The directory to be created

already exists.

Rename the directory to be

created.

0x1002

Memory operation error,

parent directory does not

exist.

The currently created directory

has no parent directory.

Recreate the directory in another

path.

0x1003
Renamed directory does not

exist.

The directory to be renamed

does not exist.

Refresh the directory and check

that the directory exists.

0x1004
Deleted directory does not

exist.

The directory to be deleted does

not exist.

Refresh the directory and check

that the directory exists.

0x1005

Error sending directory (not a

directory or the directory does

not exist)

The directory to be sent to the

host is illegal.

Refresh the directory and check

that the directory exists.

0x1006
Memory error and path error

in creating file
Error creating path

Refresh the file and check the

path.

239

0x1007 Renamed file does not exist.
The file to be renamed does not

exist.

Refresh the file and check that the

file exists.

0x1008
Deleted file does not exist or

the path does not exist.

The file to be deleted does not

exist.

Refresh the file and check that the

file exists.

0x1009
The given path to the file does

not exist.
The given file path is illegal. Check the path.

0x100A Non-file sent What is to be sent is not a file.

Check on the handheld teach

pendant whether the object to

send is a file.

0x100B Non-directory sent
What is to be sent is not a

directory.

Check on the handheld teach

pendant whether the object to

send is a directory.

0x100C Frame sequence error
Frame sequence error in the

process of sending a large file
Resave or open the file.

0x100D

The device is not functioning

properly and is actively

disconnected from the

network.

1. The handheld teach pendant

is not closed according to

normal operations; 2. The

network is disconnected

abnormally.

1. For any error due to abnormal

operations, please actively

disconnect the network cable; 2.

For abnormality, check the error

causes in conjunction with the

existing error codes.

0x100E Time format error Time format error
Set the time according to correct

format.

0x100F System time correction error
System time calculation circuit

error
Check the network connection.

0x1010 RTC time correction error
RTC external batteries do not

exist or are low.

Replace batteries or check the

current hardware.

0x1011 Copy error
Misoperation during file

copying

Perform copy operations again by

referring to the user manual.

0x1012 Cut error Misoperation during file cutting
Perform cut operations again by

referring to the user manual.

0x1014 File encryption failed Error encrypting file Try to encrypt the file again.

0x1015
Unknown communication

code
Version mismatch

Ensure the teach pendant and the

controller match in version.

0x1016 Eth1 physical link down Eth1 line not working

1.Check if the network cable is

plugged in or not in good contact.

2.Hardware failure, contact the

manufacturer.

0x1017 Eth2 physical link down Eth2 line not working

1.Check if the network cable is

plugged in or not in good contact.

2.Hardware failure, contact the

manufacturer.

0x1018 Controller fan 1 failure FAN1 blocked

1. Check if there are foreign

objects blocking FAN1 in the

front chamber of the cabinet,

240

which prevents the fan from

running.

2. The fan itself is faulty, replace

it with a new fan.

0x1019 Controller fan 2 failure FAN2 blocked

1. Check if there are foreign

objects blocking FAN1 in the

front chamber of the cabinet,

which prevents the fan from

running.

2. The fan itself is faulty, replace

it with a new fan.

0x101A
The temperature on the top of

the controller is too high.

ST1 ambient temperature

exceeds 60℃.

1. Check whether FAN1 in the

front chamber operates normally

and whether the dust-proof cotton

of the fan cover is seriously

blocked.

2. Check whether there are any

components with abnormal

temperature in the front chamber.

The temperature control switch

automatically resets when the

ambient temperature drops to

45±5℃.

3. The temperature control switch

is faulty, replace it with a new

one.

0x101B Transformer overtemperature
The transformer ST2

temperature exceeds 140℃.

1. Check whether FAN2 in the

rear chamber operates normally

and whether the dust-proof cotton

of the fan cover is seriously

blocked.

2. Check whether the QF2 circuit

breaker is faulty, and whether

there is an abnormally large load

on the secondary side of the

transformer. The temperature

control switch automatically

resets when the B-phase coil of

the transformer cools down to

105±15℃.

3. The transformer is damaged,

replace it with a new one.

0x101C Output I/O overcurrent Output I/O overcurrent Check the hardware line.

0x101D Fan not installed The fan is not installed or has Check the fan installation.

241

poor contact.

0x101E
Controller overtemperature

alarm

The temperature inside the

controller is too high.
Cool down and restart

0x101F
Controller overtemperature

warning

The temperature inside the

controller is too high.
Cool down and restart

0x1020
Oscilloscope function thread

startup failed
System fault Re-power

0x1021
Mains power fluctuations

detected

Mains power supply is unstable

with voltage fluctuations.

Check if the power supply system

is stable and if there are

fluctuations in the voltage range.

0x1022 J1 brake disconnected

1. The Power line is not

connected.

2. Parameter H02-16 is

incorrectly configured.

3. The brake is disconnected.

4. The power supply of the

brake is abnormal.

1. Turn off the power supply,

connect the power line and power

up again.

2. For motors without brake

function, set H02-16 to 0.

3. Replace the cable.

4. Replace the controller.

0x1023 J2 brake disconnected

1. The Power line is not

connected.

2. Parameter H02-16 is

incorrectly configured.

3. The brake is disconnected.

4. The power supply of the

brake is abnormal.

1. Turn off the power supply,

connect the power line and power

up again.

2. For motors without brake

function, set H02-16 to 0.

3. Replace the cable.

4. Replace the controller.

0x1024 J3 brake disconnected

1. The Power line is not

connected.

2. Parameter H02-16 is

incorrectly configured.

3. The brake is disconnected.

4. The power supply of the

brake is abnormal.

1. Turn off the power supply,

connect the power line and power

up again.

2. For motors without brake

function, set H02-16 to 0.

3. Replace the cable.

4. Replace the controller.

0x1025 J4 brake disconnected

1. The Power line is not

connected.

2. Parameter H02-16 is

incorrectly configured.

3. The brake is disconnected.

4. The power supply of the

brake is abnormal.

1. Turn off the power supply,

connect the power line and power

up again.

2. For motors without brake

function, set H02-16 to 0.

3. Replace the cable.

4. Replace the controller.

0x1026 J5 brake disconnected

1. The Power line is not

connected.

2. Parameter H02-16 is

incorrectly configured.

3. The brake is disconnected.

4. The power supply of the

1. Turn off the power supply,

connect the power line and power

up again.

2. For motors without brake

function, set H02-16 to 0.

3. Replace the cable.

242

brake is abnormal. 4. Replace the controller.

0x1027 J6 brake disconnected

1. The Power line is not

connected.

2. Parameter H02-16 is

incorrectly configured.

3. The brake is disconnected.

4. The power supply of the

brake is abnormal.

1. Turn off the power supply,

connect the power line and power

up again.

2. For motors without brake

function, set H02-16 to 0.

3. Replace the cable.

4. Replace the controller.

0x1028 Safety door alarm
The safety circuit is open and

the safety door is open.

Close the safety circuit or the

safety door.

0x1029

System is not fully powered

off and may cause system

problems, power the system

on again

The servo’s 24V drive power is

cut off, causing abnormal power

supply to the inverter module,

resulting in an N-phase

overcurrent alarm. The fault

cannot be recovered and the

system must be powered on

again.

Re-power the system.

0x102A
Program directory file path

does not exist.

The program directory is

missing.
Contact the manufacturer.

0x102B
Program file path does not

exist.

The specified program file is

missing.

1. Check that the program exists.

2. Contact the manufacturer.

0x102C Invalid variable setting
Incorrect variable name or

value

1. Check if the variable name or

label is P, B, R, D, Str, and

whether the subscript is

reasonable.

2. Check that the type of the value

matches and is within the range.

0x1030
Self-learning vibration

suppression data file missing

The self-learning vibration

suppression data file is deleted

after the robot is turned on.

1. Restart the robot to

automatically restore the

self-learning vibration

suppression data file.

2. Import the self-learning

vibration suppression data file

from outside.

0x1031

Print messages are too

frequent and the buffer is full,

print information may be lost

The Print instruction is used too

often in the program to print

messages, resulting in too many

messages being printed and the

output buffer is full.

Reduce the frequency or amount

of Print instructions in the

program to avoid loss of print

messages.

0x1032 Device in use The device is being used.

Close any programs or windows

that may be using the device and

try again.

0x1033 Controller fan rotor locked. The fan is stuck by a foreign Turn off the power and remove

243

object. the foreign object from the fan, or

contact the technical support.

0x1040

Self-learning vibration

suppression profile does not

exist.

The self-learning vibration

suppression profile is deleted by

mistake after the robot is turned

on.

1. Restart the robot to

automatically restore the data file

for self-learning vibration

suppression function.

2. Import the data file for

self-learning vibration

suppression function from

outside.

0x1041

Failed to clear all

self-learning vibration

suppression data

1. The robot system is busy.

2. The file system is corrupted.

1. Try clearing again.

2. Contact the manufacturer.

0x1042

Failed to clear self-learning

vibration suppression data file

for current position

1. The robot system is busy.

2. The file system is corrupted.

1. Try clearing again.

2. Contact the manufacturer.

0x1043

Self-learning vibration

suppression data file

corrupted

The file exists but cannot be

opened, or the contents of the

file are illegal.

Restore default parameters on the

host controller and restart the

robot.

0x1044
Failed to create self-learning

vibration suppression data file

File system exception or other

system exception.
Contact the manufacturer.

0x1045
Failed to import self-learning

vibration suppression data file

1. The contents of the imported

file are illegal.

2. Channels are busy, causing

failure in setting DSP

parameters.

1. Re-import a legal file.

2. Try to restart the robot.

0x1101
Invalid length of data

exchanged internally

When requested to provide data,

the DSP does not return valid

data as required.

Check the DSP software version

or replace the hardware.

0x1102
Verification error for data

exchanged internally

When requested to provide data,

the DSP did not return valid

data as requested or returned

data with error codes.

Check the DSP software version

or replace the hardware.

0x1103 Error writing block data
The GPMC channel is

abnormal.

Check the DSP software version

or replace the hardware.

0x1104 Error reading block data
The GPMC channel is

abnormal.

Check the DSP software version

or replace the hardware.

0x1105
System internal block data

buffer full

The FPGA buffer is full and

cannot accept new data.

Retry to write data after delay for

a period of time.

0x1106
Internal channel open error:

Abnormal or occupied

The GPMC channel is abnormal

or has been occupied.
Restart the controller.

0x1107
Internal channel open error:

Abnormal or closed

The GPMC channel is abnormal

or has been closed.
Restart the controller.

0x1108 System busy internally The DSP does not respond to 1. Retry after a while. 2. Restart

244

robot instructions. the robot. 3. Check if the DSP has

been suspended or terminated.

0x1109
Error getting channel

resources

The CPMC channel is

frequently occupied so that

currently the system cannot

apply for use of CPMC

resources.

Retry to use them after delay for a

period of time.

0x110A
Timeout waiting for motion

module response

The response time to robot

instructions from the DSP

exceeds the set maximum

waiting time.

1. Retry after a while. 2. Restart

the robot. 3. Check if the DSP has

been suspended or terminated.

0x110B

Motion module failed to

execute the command sent by

ARM

The DSP failed to execute the

robot instructions.

Check if the current operation is

legal or check the DSP software

version.

0x110C
Illegal parameters set for

motion module

Parameters set by the robot for

the DSP are incorrect, e.g. out

of the parameter range.

Check that function call interface

parameters are correct.

0x110D
Illegal commands set for

motion module

Commands requested by the

robot to the DSP are invalid.

Check the command word and

ensure that there is processing on

this command in the DSP.

0x110E

The number of axes

configured for the system is

inconsistent with the number

of online scanned axes.

The model is not matched or

servo is disconnected.

Check the model and servo

connection to ensure that the

current robot is consistent with

the configured robot.

0x110F

The axis data sent is

inconsistent with the data

read.

Data check error
Check the software version or

contact the manufacturer.

0x1110

The I/O data sent is

inconsistent with the data

read.

Data check error
Check the software version or

contact the manufacturer.

0x1111

Error in servo entering

homing mode via EtherCAT

instructions

The servo cannot enter the

homing mode.

Check the software version or

contact the manufacturer.

0x1112

Error in servo exiting homing

mode via EtherCAT

instructions

The servo cannot exit the

homing mode.

Check the software version or

contact the manufacturer.

0x1113

Error in setting homing

parameters for the servo via

EtherCAT instructions

The set homing parameters are

not accepted by servo.

Check the software version or

contact the manufacturer.

0x1114 System parameter check error Data check error
Check the software version or

contact the manufacturer.

0x1115 Error opening data channel
The GPMC channel number is

incorrect.

The default channel is 0. Ensure

that the channel number is

correct.

245

0x1116 Data channel mapping error
The GPMC data channel cannot

map data to the memory.

Check the software version or

contact the manufacturer.

0x1117 Data channel mapping error
The GPMC channel is

abnormal.

Check the software version or

contact the manufacturer.

0x1118 Data channel mapping error
The GPMC channel is

abnormal.

Check the software version or

contact the manufacturer.

0x1119 Device error
The GPMC channel is

abnormal.

Check the software version or

contact the manufacturer.

0x111A Error opening data channel
The GPMC channel is

abnormal.

Check the software version or

contact the manufacturer.

0x111B
Data communication

discrepancy

The GPMC channel is

abnormal.

Check the software version or

contact the manufacturer.

0x111C
Data communication

discrepancy

The GPMC channel is

abnormal.

Check the software version or

contact the manufacturer.

0x111D
Error system requesting

memory

The system cannot assign

requested memory.

Check whether the system

memory is close to the limit or

whether the requested memory is

too large.

0x111E

Error configuring I/O data

bias information on the

IR-LINK bus

Data check error
Check the software version or

contact the manufacturer.

0x111F

Error configuring AD data

bias information on the

IR-LINK bus

Data check error
Check the software version or

contact the manufacturer.

0x1120

Error configuring DA data

bias information on the

IR-LINK bus

Data check error
Check the software version or

contact the manufacturer.

0x1121

Error configuring encoder

data bias information on the

IR-LINK bus

Data check error
Check the software version or

contact the manufacturer.

0x1122

Error configuring AD

parameter (range) on

IR-LINK bus

Data check error
Check the software version or

contact the manufacturer.

0x1123

Error configuring DA

parameter (range) on

IR-LINK bus

Data check error
Check the software version or

contact the manufacturer.

0x1124
Error configuring module

number on IR-LINK bus
Data check error

Check the software version or

contact the manufacturer.

0x1125

Error synchronizing controller

planning position with

encoder feedback position

The current axis does not exist

or the GPMC channel or DSP

firmware is abnormal.

Check the software version or

contact the manufacturer.

0x1200
Robot in emergency stop state

when enabled

The robot is in an emergency

stop when the enable command

is issued.

Check the emergency stop button,

clear the emergency stop status

and re-enable the robot.

246

0x1201

Excessive fluctuation in robot

joint position when the robot

is enabled

The robot is currently in a

vibrating or dragged state.

Reduce the joint vibration of the

robot and enable it after the robot

stabilizes.

0x1202
Servo alarm present when the

robot is enabled

The robot has a servo alarm

when enabled.

Clear the servo alarm and

re-enable the robot.

0x1203
Robot enabled too quickly

after being disabled

The robot is enabled too quickly

after it is disabled.

Clear the alarm and re-enable the

robot.

0x1204

Alarms other than joint

overrun present when robot is

enabled

There are other alarms besides

joint overrun.

Clear the alarm and re-enable the

robot.

0x1205

Excessive fluctuation in robot

joint position when getting

zero point

The robot is currently in a

vibrating or dragged state.

Reduce the joint vibration of the

robot and get the zero point after

the robot stabilizes.

0x2001 Segment data overlap

The previously input target

point is the same with the

currently input target point.

Reteach the robot with different

points.

0x2002
Error calculating input arc

parameters

Circular arc interpolation

information cannot be

calculated because: (1) At least

two points are too close;(2)

Three points are approximately

in the same line;(3) Pose change

is too large;(4) Transition is

performed near a singularity.

Re-teach the robot with other

points to calculate the circular

arc.

0x2003
Error calculating input linear

parameters

Linear interpolation information

cannot be calculated because:

(1) Pose change is too large;(2)

Transition is performed near a

singularity.

Re-teach other points to calculate

the line.

0x2004 Inverse kinematics error
The robot is at a singularity or

out of reach.

Disable the robot, switch to the

joint mode and then move the

robot out of the singularity, or

change the target points to those

that can be arrived.

0x2005 Singularity error
The robot moves to a singular

position.

Switch to the joint mode and

move the robot out of the

singularity.

0x2006 Enable off during running

(1) Power failure of a drive

occurs;(2) A drive is wired

incorrectly;(3) A drive fails.

Check that the drive is normal.

0x2007 Reserved Reserved Reserved

0x2008 I/O index out of range
The physical I/O module does

not exist.

Check that a corresponding

physical I/O module is available.

0x2009 Jump parameter setting error MH parameter is beyond the Modify the limit height or reselect

247

limit of J3 axis. a start or end point.

0x200A Incorrect arm type parameter

Three arm type parameters

before the end point are not

consistent with those of the start

point in linear or circular

motion.

Modify the motion to joint motion

or reselect points to ensure

consistent arm type.

0x200B
Inappropriate motion

characteristic parameters

The motion parameter input

range is unreasonable.

Modify motion parameters such

as speed and acceleration.

0x200C DA operation error

The channel is configured as

current output, but the voltage

command is used. Or the

channel is configured as voltage

output, but the current

command is used.

Operate the DA port using a

command consistent with the

configuration.

0x200D

The command to enable servo

is sent, but the servo is not

enabled actually.

(1) The main power supply of

the servo is not switched on.

(2) The joint may be in

deceleration process.

(3) The joint is in motion state

and does not arrive at the

position.

(1) Check whether the strong

current button of the controller is

pressed down.

(2) The interval between servo

stop and start or enable is too

short.

(3) Check whether the joint

arrives at the position. Amplify

the arrival error or adjust the

servo parameters.

(4) Status word feedback is too

slow.

0x200E
Joint motion parameter input

error

(1) The points are beyond the

space range for the Delta

robots.

(2) MoveJ and MOVL or

MOVC performs transition near

a singularity.

(1) Check whether the points are

beyond the space range for the

Delta robots.

(2) Check whether MoveJ and

MOVL or MOVC performs

transition near a singularity.

0x200F Robot not returned to zero

The robot does not perform the

homing operation when an

incremental encoder is used.

For incremental encoder, perform

the homing operation first.

0x2010
Robot radius direction out of

bounds

The X and Y combined radius

at the end of the robot is greater

than the set radius.

Under the rectangular coordinate

system, step so that the robot end

moves in the direction of

reduction of the X and Y

combined radius.

0x2011
Robot positive Z direction out

of bounds

The Z at the end of the robot is

greater than the setpoint.

Under the rectangular coordinate

system, step so that the robot end

moves in the negative direction of

Z.

248

0x2012
Robot negative Z direction

out of bounds

The Z at the end of the robot is

smaller than the setpoint.

Under the rectangular coordinate

system, step so that the robot end

moves in the positive direction of

Z.

0x2013 Robot out of bounds
The teaching point exceeds the

boundary.

Change the teaching points so that

they are within the work space of

the robot.

0x2016

The included angle between

J2 and J3 axes of the

palletizing robot is too small.

The included angle between J2

and J3 axes of the palletizing

robot is too small.

In the teach mode, rotate the J3

axis positively or the J2 axis

negatively.

0x2017

The included angle between

J2 and J3 axes of the

palletizing robot is too large.

The included angle between J2

and J3 axes of the palletizing

robot is too large.

In the teach mode, rotate the J3

axis positively or the J2 axis

negatively.

0x2018 Abnormal robot speed

The robot joint speed exceeds

twice the allowable maximum

speed.

1) Ensure that the allowable

maximum speed and acceleration

of joints are reasonably set;

2) Ensure that the robot is not

near a singularity;

3) Reduce the linear motion

speed.

0x2019 Motion parameter error
The motion planning

parameters are abnormal.

Check that the motion parameters

(speed, acceleration) are

reasonable.

0x201A

The robot’s position speed or

orientation speed exceeds the

setting value.

The robot end motion exceeds

the set position or orientation

speed.

1. If the MoveJ instruction is

used, set the MoveJ speed

coefficient to a smaller value.

2. Check whether the set

orientation speed is consistent

with the J4 joint speed.

0x201D Arm type change error

The arm type change instruction

(specially used for SCARA

robots) is not supported near a

singularity.

Replace the point with a point far

from the singularity and then call

the arm type change instruction.

0x201E
The robot acceleration is

abnormal.

The robot joint speed exceeds

50 times the allowable

maximum acceleration.

1) Ensure that the allowable

maximum speed and acceleration

of joints are reasonably set;

2) Ensure that the robot is not

near a singularity;

3) Reduce the speed and

acceleration of the linear motion.

0x201F Abnormal speed setting
Insufficient internal storage in

DSP.

Decrease the Cartesian speed or

increase the joint speed

0x2020 Abnormal speed setting
Insufficient internal spline

storage in DSP

Reduce the position and

orientation speed, or increase the

249

joint speed.

0x2021

The lower bound of

worksapce is too large or

distance of stop is too small.

The lower bound of worksapce

is too large or distance of stop is

too small for the tracking

process.

Decrease the lower bound first,

and then increase the robot stop

distance.

0x2022
Robot out of lower bound of

workspace

The robot exceeds the set

operating range in the tracking

process.

Adjust the lower working

boundary and the upper pickup

boundary; increase the robot

speed; reduce the conveyor speed.

0x2023 Conveyor speed too large
The conveyor speed exceeds a

reasonable range.

The conveyor speed exceeds the

maximum speed limit (1 m/s for

the linear conveyor and 180°/s for

the turntable conveyor).

0x2024
Conveyor speed fluctuation

too large

The conveyor speed fluctuates

excessively.

Check that the conveyor motor

speed does not fluctuate

excessively or that the conveyor

is abnormal.

0x2025 Vision data waiting timeout

No returned data is received for

a long period of time after

vision triggering signals are

sent, and the vision processing

cycle is greater than the

photographing interval.

Check whether the vision

processing period is greater than

the photographing interval.

0x2026 Robot coordinate type error

A static coordinate is used in

the tracking instruction or a

dynamic coordinate is used in

the ordinary motion instruction.

Check whether the point type is 7

(dynamic object coordinate

system) in the tracking instruction

or whether a type 7 point is used

in the non-tracking instruction.

0x2027
Dynamic point coordinate

error

The given dynamic target

position is incorrect, singular or

out of bounds.

Check that the coordinate given

by vision is within a reasonable

range.

0x2028
Syntax error in conveyor

tracking instruction

Refsys Convyor or Refsys Base

is used continuously.

Check that RefConvyor and

RefBase are jointly used.

0x2029

Failed to establish coordinate

system for grasping the work

object

The Refsys Convyor instruction

is executed before the

GetCnvObject instruction is

executed.

Call the GetCnvObject instruction

first.

0x202A Conveyor vision port error
Multiple conveyors adopting

vision detection are used.

Check whether more than two

vision inputs are used at the same

time.

0x202B
Single-step teaching is not

allowed.

The conveyor tracking-related

instructions do not allow

single-step teaching.

Single-step operation on

instructions between Refsys

Convyor and Refsys Base is not

allowed.

250

0x202C
A disabled conveyor is used

in the instruction.

A disabled conveyor is used in

the instruction.

Check whether the conveyor used

in the program is disabled.

0x202D
PTP motion not allowed in

the tracking process

Joint motions such as MovJ and

JumP are used in the tracking

process.

Check whether the MovJ or jump

instruction is used between

Refsys Convyor and Refsys Base.

0x202E
Conveyor speed direction

error

The conveyor speed is detected

to be a negative value.

(1) Check that the encoder

direction parameter on the

conveyor setting interface is

correct.

(2) Check that the conveyor is not

slipping.

0x202F

The start position for teaching

in Cartesian system is at a

singular position where

inverse kinematic solution

cannot be executed.

The start position for teaching

in Cartesian system is at a

singular position where inverse

kinematic solution is

impossible.

Switch to joint mode and move

out of the singular position.

0x2030 Inconsistent latch counters

The robot position latching

counters of the respective axes

are inconsistent, resulting in

incorrect latch state feedback

from the servo.

Check that the latching signals of

the respective axes are active.

0x2031 Latching buffer full

When the robot position is

latched, the latching buffer is

full.

The latching speed is too fast, or

there are too many latched

positions that are not used.

0x2032
The motion range of J1 or J2

exceeds 180°.

When the inverted SCARA

robot performs interpolation

motion, the motion range of J1

or J2 axis exceeds 180°, making

it impossible to ensure that the

termination angle of

interpolation motion is

consistent with the

predetermined angle.

Avoid the above situations.

0x2034
The motion range of J2 is

through the singular point.

When the inverted SCARA

robot performs interpolation

motion, the J1 axis moves

through the singularity, making

it impossible to ensure that the

termination angle of

interpolation motion is

consistent with the

predetermined angle.

Avoid the above situations.

0x2035
EtherCAT communication

feedback error

EtherCAT bus feedback data is

missing.

Check that the EtherCAT cable is

properly connected and there is

251

no external interference.

0x2036 Position latch timeout

1. The servo is not properly

configured with probe function.

2. The correct I/O edge signal is

not triggered.

3. Hardware interference.

1. Check if a valid edge signal is

output.

2. Check if the servo probe is

configured.

3. Check for hardware

interference.

0x2041
Limit-triggering point present

in planned trajectory

The planned trajectory includes

points that may trigger the limit.

Check the corresponding motion

segment for points that may

trigger limit.

0x2042
The constraint of velocity in

trajectory is very low.

(1) In the planning, the

calculated spatial velocity

constraint is too small, and the

velocity parameters are set

incorrectly. (2) The trajectory is

close to a singularity.

(1) Adjust the set speed

parameters. (2) Adjust the

trajectory away from the

singularity.

0x2043

A position where inverse

kinematic solution cannot be

executed exists in the planned

trajectory.

Inverse kinematic solution

cannot be executed at an

intermediate point of the

planned trajectory.

Modify points in the erroneous

section of trajectory.

0x2044

The position goes beyond the

lower operating boundary

during the dynamic tracking

preprocessing.

The target point is detected to

go beyond the lower operating

boundary during the dynamic

tracking preprocessing.

1. Check that the received vision

data point is within a reasonable

range. 2. Check that the dynamic

coordinates in the given motion

instruction are not out of the

lower operating boundary.

0x2045
Limit triggered at J1 in the

planned trajectory

A limit is triggered at J1 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2046
Limit triggered at J2 in the

planned trajectory

A limit is triggered at J2 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2047
Limit triggered at J3 in the

planned trajectory

A limit is triggered at J3 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2048
Limit triggered at J4 in the

planned trajectory

A limit is triggered at J4 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2049
Limit triggered at J5 in the

planned trajectory

A limit is triggered at J5 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x204A
Limit triggered at J6 in the

planned trajectory

A limit is triggered at J6 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

252

0x204B
Excessive orientation change

found in planned trajectory

The motion angle of J4, J5, and

J6 in the trajectory planned

through linear and circular

motion instructions exceeds

179.9°.

1. Reduce the orientation change

during a single motion.

2. Check the difference in

ARM_TYPE of points between

the alarming program line and the

previous program line.

3. Change the orientation for

linear or circular motion.

0x2060 Insufficient instruction space

The joint speed is too small

while the spatial speed is too

large.

(1) Increase the joint speed. (2)

Reduce the spatial speed.

0x2061
Insufficient space for planned

positions

The joint speed is too small

while the spatial speed is too

large.

(1) Increase the joint speed. (2)

Reduce the spatial speed.

0x2062 Interpolation data error

(1) The joint speed and

acceleration are not reasonably

set.

(2) The motion trajectory is too

long.

(1) Set the joint speed and

acceleration appropriately.

(2) Split the trajectory into

multiple segments.

0x2063 Insufficient spline space

(1) The spline distance is too

large.

(2) The speed is too low during

transition.

(1) Reduce the transition length.

(2) Increase the set speed.

(3) Save the error message and

contact the manufacturer.

0x2064
Spline interpolation planning

error

Spline interpolation planning

error

Save the error message and

contact the manufacturer.

0x2065 Speed fitting error Speed fitting error
Save the error message and

contact the manufacturer.

0x2066 Speed planning error Speed planning error
Save the error message and

contact the manufacturer.

0x2067 Joint transition planning error

Incorrect calculation results

during joint transition planning

due, for example, to

unreasonable input parameters.

If possible, fine-tune the points or

motion parameters

0x2068
Speed look-ahead check not

reasonable

It is checked that the look-ahead

results are not reasonable.

Save the error message and

contact the manufacturer.

0x2069
Adaptive planning results

check not reasonable

Adaptive planning results check

not reasonable

Save the error message and

contact the manufacturer.

0x206A
General planning results

check not reasonable

General planning results check

not reasonable

Save the error message and

contact the manufacturer.

0x206B

Joint speed or acceleration

exceeds the set value during

normal transition

The set joint speed may be

exceeded during a normal

transition in CP mode.

(1) Decrease the position speed

and orientation speed or increase

the joint speed appropriately.

(2) Adjust points to move away

from the singularities. Reduce the

253

transition level and transition

length.

0x206C
The joint speed in tracking

motion exceeds the set value.

The joint speed in tracking

motion exceeds the set value.

Reduce the conveyor speed or the

robot speed.

0x206D Smooth stop exception

The deceleration distance is

insufficient when a smooth stop

is made.

Save the error message and

contact the manufacturer.

0x206E
Joint transition parameter

error
Joint transition parameter error Modify the points.

0x206F Singular position alarm

Proximity to the singular

position causes joint speed and

acceleration to be too large.

1. Adjust the motion away from

the singularities.

2. Set the motion speed near the

singularities small.

0x2071

In teaching mode, a limit is

triggered at J1 in the planned

trajectory.

A limit is triggered at J1 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2072

In teaching mode, a limit is

triggered at J2 in the planned

trajectory.

A limit is triggered at J2 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2073

In teaching mode, a limit is

triggered at J3 in the planned

trajectory.

A limit is triggered at J3 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2074

In teaching mode, a limit is

triggered at J4 in the planned

trajectory.

A limit is triggered at J4 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2075

In teaching mode, a limit is

triggered at J5 in the planned

trajectory.

A limit is triggered at J5 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2076

In teaching mode, a limit is

triggered at J6 in the planned

trajectory.

A limit is triggered at J6 in the

planned trajectory.

Check the corresponding motion

segment for points that may

trigger limit.

0x2077

In teaching mode, a position

where inverse kinematic

solution cannot be executed

exists in the planned

trajectory.

Inverse kinematic solution

cannot be executed at an

intermediate point of the

planned trajectory.

Modify points in the erroneous

segment.

0x2078

Error in calculating linear

input parameters in teaching

mode

Unable to calculate linear

interpolation information.

Re-teach the robot with other

points to calculate the linear

interpolation information.

0x2079

The arm type is inconsistent

with the current point during

preprocessing in teaching

state and space interpolation

cannot be performed.

The ARM_TYPE parameter is

inconsistent with the current

point during preprocessing and

spatial interpolation cannot be

performed.

Modify points in the erroneous

segment.

254

0x207A
Orientation motion is found to

be too large in teaching state.

The orientation motion angle is

found to be greater than 180

degrees in the planned

trajectory.

(1) Reduce the pose change

during a single motion.

(2) Check the difference in

ARM_TYPE of points between

the alarming program line and the

previous program line.

0x207B

The constraint of velocity in

trajectory is very low in

manual mode.

The constraint of velocity in

trajectory is too small.

In teaching mode, the spatial

velocity constraint calculated in

the planning is too small due to

incorrect speed parameter setting

or singularities.

0x2081
Valid hardware signal for

emergency stop

Hardware emergency stop is

active.

A hardware emergency stop is

active. Confirm safety and then

release the alarm.

0x2082 Mode switch timeout

1. The robot's acceleration

setting is too small, resulting in

a long downtime.

2. The robot is moving while

switching mode.

1. Check that the motion

parameters are set correctly; stop

the current motion and make sure

the robot is stationary before

switching mode.

2. Stop the current motion and

make sure the robot is stationary

before switching mode.

0x2083 Power error

1. The input power supply is

abnormal.

2. System hardware failure.

View the servo parameter H0B-45

and handle the problem according

to the user guide.

0x2084 Fan error

1. The fan is not connected.

2. The fan cable has poor

contact or broken wire.

View the servo parameter H0B-45

and handle the problem according

to the user guide.

0x2085

Discharge tube shorted or

regenerative resistor not

connected

1. The regenerative resistor is

not connected.

2. The discharge tube is shorted.

View the servo parameter H0B-45

and handle the problem according

to the user guide.

0x2086 Discharge tube open circuit Discharge tube open circuit

View the servo parameter H0B-45

and handle the problem according

to the user guide.

0x2091 Trajectory recovery exception

1. Exception in line number

processing for trajectory

recovery.

2. Exception in data

communication for trajectory

recovery.

1. Reset the line number.

2. Save the error message and

contact the manufacturer.

0x2092
Trajectory recovery target

point error

1. Exception in line number

processing for trajectory

recovery.

2. Exception in data

1. Reset the line number.

2. Save the error message and

contact the manufacturer.

255

communication for trajectory

recovery.

0x2093
Trajectory recovery motion

state error

1. Exception in line number

processing for trajectory

recovery.

2. Exception in data

communication for trajectory

recovery.

1. Reset the line number.

2. Save the error message and

contact the manufacturer.

0x20A1
Data acquisition board

connection failure

The data acquisition board is

damaged; the data acquisition

board cable is disconnected.

Check that the data acquisition

board is installed; check that the

data acquisition board is properly

connected (flashing green); check

that the cable and plug

connections are intact; replace the

data acquisition board.

0x20A2
Data acquisition board data

error

The data collection board is

damaged.

Check that the data acquisition

board is properly connected

(flashing green); replace the data

acquisition board.

0x20A3

Data acquisition board

communication error

The data acquisition board

encounters data frame loss.

Check that the data acquisition

board cable and plug are well

connected; check whether the

robot motion may cause the data

acquisition board plug to have

poor contact under stress.

0x20A4
Data acquisition board data

changed significantly

Electromagnetic interference;

robot collides with the

environment; robot moves with

abnormal sound.

Check the environment for severe

electromagnetic interference;

reduce the acceleration of motion;

replace the data acquisition board;

check if the robot collides with

the environment.

0x20A5
Data acquisition board

overtemperature

Data acquisition board

overtemperature

Check that the temperature of the

robot's working environment

meets the requirements; reduce

the speed and acceleration of the

robot.

0x20A6 Excessive robot vibration Excessive robot vibration

Check the robot for visible

vibrations; check the robot joints

for obvious transmission

clearance; reduce the acceleration

or speed of motion.

0x20A7
Robot positioning time too

long

Residual robot vibration is

significant, resulting in long

positioning time.

Check the robot for visible

vibrations; check the robot joints

for obvious transmission

256

clearance; increase the arrival

error threshold; reduce the

acceleration or speed of motion.

0x20A8 Collision detected

Robot collides with

environment; robot moves with

abnormal sound..

Check whether the robot collides

with the environment; check

whether there are abnormal noises

during the robot motion.

0x20A9 Vibration suppression failure Vibration suppression failure

Check that the data acquisition

board cable is connected properly.

If the connection is normal and

the alarm persists after re-power,

turn off the vibration suppression

function.

0x20AA Robot motion state error

The robot model in software is

not consistent with actual one;

mechanical anomalies such as

collision, loose or stuck drive

mechanism; excessive zero

deviation of the robot; joint

reduction ratio set incorrectly;

reverse direction of joint

movement; wrong installation

direction of data acquisition

board.

Check in the following order:

Make sure the robot model in

software is the same as with the

actual one; check for mechanical

anomalies such as collision, loose

or stuck drive mechanism; check

that the zero point of the robot is

accurate; check that the reduction

ratio parameter is correctly set;

check that the direction of joint

movement is correct; check that

the data acquisition board is

mounted in the correct direction.

If the alarm persists, turn off the

data acquisition board alarm

function.

0x20AB
Self-learning vibration

suppression calculation error

Self-learning vibration

suppression calculation error

Reduce the motion speed; turn off

the self-learning vibration

suppression function.

0x20AC
Self-learning vibration

suppression learning timeout

Self-learning vibration

suppression learning timeout;

1. Change the self-learning flag in

the motor instruction to SLOff.

2. Contact the manufacturer.

0x20B1 Tool load mass exceeds limit
The mass setting of the tool

load exceeds the limit.

1. Reduce the mass setting of the

tool load to the limit range.

0x20B2
Tool load centroid position

exceeds limit

The centroid position setting of

the tool load exceeds the limit.

1. Reduce the centroid position

setting of the tool load to the limit

range.

0x20B3
Tool load centroid pose

exceeds limit

The centroid pose setting of the

tool load exceeds the limit.

1. Reduce the centroid pose

setting of the tool load to the limit

range.

0x20B4 Tool load inertia exceeds limit The inertia setting of the tool 1. Reduce the inertia setting of the

257

load exceeds the limit. tool load to the limit range.

0x20B5
Workobject load mass

exceeds the limit

The mass setting of the

workobject load exceeds the

limit.

1. Reduce the mass setting of the

workobject load to the limit

range.

0x20B6
Workobject load centroid

position exceeds limit

The centroid position setting of

the workobject load exceeds the

limit.

1. Reduce the centroid position

setting of the workobject load to

the limit range.

0x20B7
Workobject load centroid

pose exceeds limit

The centroid pose setting of the

workobject load exceeds the

limit.

1. Reduce the centroid pose

setting of the workobject load to

the limit range.

0x20B8
Workobject load inertia

exceeds limit

The inertia setting of the

workobject load exceeds the

limit.

1. Reduce the inertia setting of the

workobject load to the limit

range.

0x20B9
Arm load mass exceeds the

limit

The mass setting of the arm

load exceeds the limit.

1. Reduce the mass setting of the

arm load to the limit range.

0x20BA
Arm load centroid position

exceeds limit

The centroid position setting of

the arm load exceeds the limit.

1. Reduce the centroid position

setting of the arm load to the limit

range.

0x20BB
Arm load centroid pose

exceeds limit

The centroid pose setting of the

arm load exceeds the limit.

1. Reduce the centroid pose

setting of the arm load to the limit

range.

0x20BC Arm load inertia exceeds limit
The inertia setting of the arm

load exceeds the limit.

1. Reduce the inertia setting of the

arm load to the limit range.

0x20C1 Collision detected on J1 axis

Collision occurs or the motor of

the corresponding axis is stuck,

or the brake is not opened.

Check whether a collision has

occurred, if not: 1) Check that the

load parameters are set correctly;

2) Check that the robot model in

the controller matches the actual

robot; 3) Check the robot for

motor jam, brake not opened, etc.;

4) If the robot operates at high

speed and heavy load, it will

cause current saturation

phenomenon, which is prone to

false alarms, so prevent the robot

from operating under such

conditions; 5) If it is determined

to be a false alarm, the collision

detection sensitivity of the axis

can be appropriately increased; 6)

If the alarm persists, turn off the

collision detection switch for that

axis.

0x20C2 Collision detected on J2 axis Collision occurs or the motor of Check whether a collision has

258

the corresponding axis is stuck,

or the brake is not opened.

occurred, if not: 1) Check that the

load parameters are set correctly;

2) Check that the robot model in

the controller matches the actual

robot; 3) Check the robot for

motor jam, brake not opened, etc.;

4) If the robot operates at high

speed and heavy load, it will

cause current saturation

phenomenon, which is prone to

false alarms, so prevent the robot

from operating under such

conditions; 5) If it is determined

to be a false alarm, the collision

detection sensitivity of the axis

can be appropriately increased; 6)

If the alarm persists, turn off the

collision detection switch for that

axis.

0x20C3 Collision detected on J3 axis

Collision occurs or the motor of

the corresponding axis is stuck,

or the brake is not opened.

Check whether a collision has

occurred, if not: 1) Check that the

load parameters are set correctly;

2) Check that the robot model in

the controller matches the actual

robot; 3) Check the robot for

motor jam, brake not opened, etc.;

4) If the robot operates at high

speed and heavy load, it will

cause current saturation

phenomenon, which is prone to

false alarms, so prevent the robot

from operating under such

conditions; 5) If it is determined

to be a false alarm, the collision

detection sensitivity of the axis

can be appropriately increased; 6)

If the alarm persists, turn off the

collision detection switch for that

axis.

0x20C4 Collision detected on J4 axis

Collision occurs or the motor of

the corresponding axis is stuck,

or the brake is not opened.

Check whether a collision has

occurred, if not: 1) Check that the

load parameters are set correctly;

2) Check that the robot model in

the controller matches the actual

259

robot; 3) Check the robot for

motor jam, brake not opened, etc.;

4) If the robot operates at high

speed and heavy load, it will

cause current saturation

phenomenon, which is prone to

false alarms, so prevent the robot

from operating under such

conditions; 5) If it is determined

to be a false alarm, the collision

detection sensitivity of the axis

can be appropriately increased; 6)

If the alarm persists, turn off the

collision detection switch for that

axis.

0x20C5 Collision detected on J5 axis

Collision occurs or the motor of

the corresponding axis is stuck,

or the brake is not opened.

Check whether a collision has

occurred, if not: 1) Check that the

load parameters are set correctly;

2) Check that the robot model in

the controller matches the actual

robot; 3) Check the robot for

motor jam, brake not opened, etc.;

4) If the robot operates at high

speed and heavy load, it will

cause current saturation

phenomenon, which is prone to

false alarms, so prevent the robot

from operating under such

conditions; 5) If it is determined

to be a false alarm, the collision

detection sensitivity of the axis

can be appropriately increased; 6)

If the alarm persists, turn off the

collision detection switch for that

axis.

0x20C6 Collision detected on J6 axis

Collision occurs or the motor of

the corresponding axis is stuck,

or the brake is not opened.

Check whether a collision has

occurred, if not: 1) Check that the

load parameters are set correctly;

2) Check that the robot model in

the controller matches the actual

robot; 3) Check the robot for

motor jam, brake not opened, etc.;

4) If the robot operates at high

speed and heavy load, it will

260

cause current saturation

phenomenon, which is prone to

false alarms, so prevent the robot

from operating under such

conditions; 5) If it is determined

to be a false alarm, the collision

detection sensitivity of the axis

can be appropriately increased; 6)

If the alarm persists, turn off the

collision detection switch for that

axis.

0x20D1
Motion state error detected on

J1 axis

1. Robot collision; or abnormal

current due to serious errors in

load parameters, model

parameters, and serious

deviation of zero point.

2. Servo faults, including:

power line UVW phase

sequence error, motor angle

error, encoder model mismatch,

encoder wiring failure, servo

gain mismatch, etc.

When troubleshooting, always

make sure that the person is

outside the robot's operating

range before activating the motor

on any axis!

1. First check if a violent collision

has occurred, if no collision

occurs, check that the load

parameters are set correctly,

check that the robot matches the

model displayed in the controller,

and check if there is a serious

deviation from the zero point of

the robot.

2. If the collision and controller

side factors are excluded, then

investigate the servo side factors

in order.

1) The UVW phase sequence is

incorrect. Connect the U/V/W

cables in the correct phase

sequence.

2) An error occurs on the initial

phase detection of the motor rotor

due to disturbing signals upon

power-on. Power on the system

again.

3. The encoder model is wrong or

the encoder is wired improperly.

Confirm the motor model, the

parameter H00-00, the encoder

type, and the encoder wiring are

correct.

261

4. The encoder is wired

improperly, aged, or connected

loosely. Re-solder, tighten or

replace the encoder cable.

5. Improper parameter setting

leads to excessive vibration. Set

the parameters appropriately to

avoid excessive vibration.

For more information, see

Appendix "Robot Alarms and

Handling Method".

0x20D2
Motion state error detected on

J2 axis

1. Robot collision; or abnormal

current due to serious errors in

load parameters, model

parameters, and serious

deviation of zero point.

2. Servo faults, including:

power line UVW phase

sequence error, motor angle

error, encoder model mismatch,

encoder wiring failure, servo

gain mismatch, etc.

When troubleshooting, always

make sure that the person is

outside the robot's operating

range before activating the motor

on any axis!

1. First check if a violent collision

has occurred, if no collision

occurs, check that the load

parameters are set correctly,

check that the robot matches the

model displayed in the controller,

and check if there is a serious

deviation from the zero point of

the robot.

2. If the collision and controller

side factors are excluded, then

investigate the servo side factors

in order.

1) The UVW phase sequence is

incorrect. Connect the U/V/W

cables in the correct phase

sequence.

2) An error occurs on the initial

phase detection of the motor rotor

due to disturbing signals upon

power-on. Power on the system

again.

3. The encoder model is wrong or

the encoder is wired improperly.

Confirm the motor model, the

parameter H00-00, the encoder

type, and the encoder wiring are

correct.

262

4. The encoder is wired

improperly, aged, or connected

loosely. Re-solder, tighten or

replace the encoder cable.

5. Improper parameter setting

leads to excessive vibration. Set

the parameters appropriately to

avoid excessive vibration.

For more information, see

Appendix "Robot Alarms and

Handling Method".

0x20D3
Motion state error detected on

J3 axis

1. Robot collision; or abnormal

current due to serious errors in

load parameters, model

parameters, and serious

deviation of zero point.

2. Servo faults, including:

power line UVW phase

sequence error, motor angle

error, encoder model mismatch,

encoder wiring failure, servo

gain mismatch, etc.

When troubleshooting, always

make sure that the person is

outside the robot's operating

range before activating the motor

on any axis!

1. First check if a violent collision

has occurred, if no collision

occurs, check that the load

parameters are set correctly,

check that the robot matches the

model displayed in the controller,

and check if there is a serious

deviation from the zero point of

the robot.

2. If the collision and controller

side factors are excluded, then

investigate the servo side factors

in order.

1) The UVW phase sequence is

incorrect. Connect the U/V/W

cables in the correct phase

sequence.

2) An error occurs on the initial

phase detection of the motor rotor

due to disturbing signals upon

power-on. Power on the system

again.

3. The encoder model is wrong or

the encoder is wired improperly.

Confirm the motor model, the

parameter H00-00, the encoder

type, and the encoder wiring are

correct.

263

4. The encoder is wired

improperly, aged, or connected

loosely. Re-solder, tighten or

replace the encoder cable.

5. Improper parameter setting

leads to excessive vibration. Set

the parameters appropriately to

avoid excessive vibration.

For more information, see

Appendix "Robot Alarms and

Handling Method".

0x20D4
Motion state error detected on

J4 axis

1. Robot collision; or abnormal

current due to serious errors in

load parameters, model

parameters, and serious

deviation of zero point.

2. Servo faults, including:

power line UVW phase

sequence error, motor angle

error, encoder model mismatch,

encoder wiring failure, servo

gain mismatch, etc.

When troubleshooting, always

make sure that the person is

outside the robot's operating

range before activating the motor

on any axis!

1. First check if a violent collision

has occurred, if no collision

occurs, check that the load

parameters are set correctly,

check that the robot matches the

model displayed in the controller,

and check if there is a serious

deviation from the zero point of

the robot.

2. If the collision and controller

side factors are excluded, then

investigate the servo side factors

in order.

1) The UVW phase sequence is

incorrect. Connect the U/V/W

cables in the correct phase

sequence.

2) An error occurs on the initial

phase detection of the motor rotor

due to disturbing signals upon

power-on. Power on the system

again.

3. The encoder model is wrong or

the encoder is wired improperly.

Confirm the motor model, the

parameter H00-00, the encoder

type, and the encoder wiring are

correct.

264

4. The encoder is wired

improperly, aged, or connected

loosely. Re-solder, tighten or

replace the encoder cable.

5. Improper parameter setting

leads to excessive vibration. Set

the parameters appropriately to

avoid excessive vibration.

For more information, see

Appendix "Robot Alarms and

Handling Method".

0x20D5
Motion state error detected on

J5 axis

1. Robot collision; or abnormal

current due to serious errors in

load parameters, model

parameters, and serious

deviation of zero point.

2. Servo faults, including:

power line UVW phase

sequence error, motor angle

error, encoder model mismatch,

encoder wiring failure, servo

gain mismatch, etc.

When troubleshooting, always

make sure that the person is

outside the robot's operating

range before activating the motor

on any axis!

1. First check if a violent collision

has occurred, if no collision

occurs, check that the load

parameters are set correctly,

check that the robot matches the

model displayed in the controller,

and check if there is a serious

deviation from the zero point of

the robot.

2. If the collision and controller

side factors are excluded, then

investigate the servo side factors

in order.

1) The UVW phase sequence is

incorrect. Connect the U/V/W

cables in the correct phase

sequence.

2) An error occurs on the initial

phase detection of the motor rotor

due to disturbing signals upon

power-on. Power on the system

again.

3. The encoder model is wrong or

the encoder is wired improperly.

Confirm the motor model, the

parameter H00-00, the encoder

type, and the encoder wiring are

correct.

265

4. The encoder is wired

improperly, aged, or connected

loosely. Re-solder, tighten or

replace the encoder cable.

5. Improper parameter setting

leads to excessive vibration. Set

the parameters appropriately to

avoid excessive vibration.

For more information, see

Appendix "Robot Alarms and

Handling Method".

0x20D6
Motion state error detected on

J6 axis

1. Robot collision; or abnormal

current due to serious errors in

load parameters, model

parameters, and serious

deviation of zero point.

2. Servo faults, including:

power line UVW phase

sequence error, motor angle

error, encoder model mismatch,

encoder wiring failure, servo

gain mismatch, etc.

When troubleshooting, always

make sure that the person is

outside the robot's operating

range before activating the motor

on any axis!

1. First check if a violent collision

has occurred, if no collision

occurs, check that the load

parameters are set correctly,

check that the robot matches the

model displayed in the controller,

and check if there is a serious

deviation from the zero point of

the robot.

2. If the collision and controller

side factors are excluded, then

investigate the servo side factors

in order.

1) The UVW phase sequence is

incorrect. Connect the U/V/W

cables in the correct phase

sequence.

2) An error occurs on the initial

phase detection of the motor rotor

due to disturbing signals upon

power-on. Power on the system

again.

3. The encoder model is wrong or

the encoder is wired improperly.

Confirm the motor model, the

parameter H00-00, the encoder

type, and the encoder wiring are

correct.

266

4. The encoder is wired

improperly, aged, or connected

loosely. Re-solder, tighten or

replace the encoder cable.

5. Improper parameter setting

leads to excessive vibration. Set

the parameters appropriately to

avoid excessive vibration.

For more information, see

Appendix "Robot Alarms and

Handling Method".

0x2101 J1 axis positive limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2102 J1 axis negative limit alarm
The joint limit position is

reached.

Perform positive motion to clear

the alarm.

0x2103 J1 axis drive alarm The drive has an alarm.

Perform troubleshooting by

referring to the servo manual

according to fault codes.

0x2104
J1 axis path planning out of

range

The planned value exceeds the

maximum calculation range

(-1073741823 to 1073741824).

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

0x2105
Excessive tracking error of J1

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

the servo gain.

(5) Consult the troubleshooting

guide.

0x2106 J1 axis overspeed
The running speed is greater

than the set maximum speed.
Reduce the speed of the J1 axis.

0x2107
Strong current of J1 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2108 J1 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether speed and

acceleration of the J1 axis are too

large.

0x2109
J1 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether speed and

acceleration of the J1 axis are too

large. Troubleshoot the brake,

mechanical parts and drive.

267

0x210A J1 axis speed overlimit

When verifying the planned

output, it was found that the set

joint speed was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x210B J1 axis acceleration overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x210C
J1 axis enable

synchronization error

The robot vibrates before it is

enabled, or the robot moves due

to external reasons during the

enabling process.

Check whether there is joint

movement during power on, and

whether there is external

interference during the enabling

process.

0x210D J1 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x210E
J1 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

check for the interference source.

0x210F J1 axis disable status error

The robot failed to be disabled

at the specified time and

distance.

1. Check that servo parameter

6084 and brake parameter 0209

are correctly set.

2. Check if the load exceeds the

limit.

0x2111 J2 axis positive limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2112 J2 axis negative limit alarm
The joint limit position is

reached.

Perform positive motion to clear

the alarm.

0x2113 J2 axis drive alarm The drive has an alarm.

Perform troubleshooting by

referring to the servo manual

according to fault codes.

0x2114
J2 axis path planning out of

range

The planned value exceeds the

maximum calculation range.

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

268

0x2115
Excessive tracking error of J2

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

the servo gain.

(5) Consult the troubleshooting

guide.

0x2116 J2 axis overspeed
The running speed is greater

than the set maximum speed.
Reduce the speed of J2 axis.

0x2117
Strong current of J2 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2118 J2 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether the speed or

acceleration is too large.

0x2119
J2 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether the speed or

acceleration is too large.

0x211A J2 axis speed overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x211B J2 axis acceleration overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x211C
J2 axis enable

synchronization error

The robot vibrates before it is

enabled, or the robot moves due

to external reasons during the

enabling process.

Check whether there is joint

movement during power on, and

whether there is external

interference during the enabling

process.

0x211D J2 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x211E
J2 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

269

check for the interference source.

0x211F J2 axis disable status error

The robot failed to be disabled

at the specified time and

distance.

1. Check that servo parameter

6084 and brake parameter 0209

are correctly set.

2. Check if the load exceeds the

limit.

0x2201 J3 axis positive limit error
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2202 J3 axis negative limit alarm
The joint limit position is

reached.

Perform positive motion to clear

the alarm.

0x2203 J3 axis drive alarm The drive has an alarm.

Perform troubleshooting by

referring to the servo manual

according to fault codes.

0x2204
J3 axis path planning out of

range

The planned value exceeds the

maximum calculation range

(-1073741823 to 1073741824).

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

0x2205
Excessive tracking error of J3

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

the servo gain.

(5) Consult the troubleshooting

guide.

0x2206 J3 axis overspeed
The running speed is greater

than the set maximum speed.
Reduce the speed of J3 axis.

0x2207
Strong current of J3 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2208 J3 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether the speed or

acceleration is too large.

0x2209
J3 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x220A J3 axis speed overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

270

accompanying alarms in the

alarm record.

0x220B J3 axis acceleration overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x220C
J3 axis enable

synchronization error

The robot vibrates before it is

enabled, or the robot moves due

to external reasons during the

enabling process.

Check whether there is joint

movement during power on, and

whether there is external

interference during the enabling

process.

0x220D J3 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x220E
J3 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

check for the interference source.

0x220F J3 axis disable status error

The robot failed to be disabled

at the specified time and

distance.

1. Check that servo parameter

6084 and brake parameter 0209

are correctly set.

2. Check if the load exceeds the

limit.

0x2211 J4 axis positive limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2212 J4 axis negative limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2213 J4 axis drive alarm The drive has an alarm.

Perform troubleshooting by

referring to the servo manual

according to fault codes.

0x2214
J4 axis path planning out of

range

The planned value exceeds the

maximum calculation range

(-1073741823 to 1073741824).

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

0x2215
Excessive tracking error of J4

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

271

the servo gain.

(5) Consult the troubleshooting

guide.

0x2216 J4 axis overspeed
The running speed is greater

than the set maximum speed.
Reduce the speed of J4 axis.

0x2217
Strong current of J4 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2218 J4 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether the speed or

acceleration is too large.

0x2219
J4 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x221A J4 axis speed overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x221B J4 axis acceleration overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x221C
J4 axis enable

synchronization error

The robot vibrates before it is

enabled, or the robot moves due

to external reasons during the

enabling process.

Check whether there is joint

movement during power on, and

whether there is external

interference during the enabling

process.

0x221D J4 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x221E
J4 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

check for the interference source.

0x221F J4 axis disable status error

The robot failed to be disabled

at the specified time and

distance.

1. Check that servo parameter

6084 and brake parameter 0209

are correctly set.

272

2. Check if the load exceeds the

limit.

0x2301 J5 axis positive limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2302 J5 axis negative limit alarm
The joint limit position is

reached.

Perform positive motion to clear

the alarm.

0x2303 J5 axis drive alarm The drive has an alarm.

Perform troubleshooting by

referring to the servo manual

according to fault codes.

0x2304
J5 axis path planning out of

range

The planned value exceeds the

maximum calculation range

(-1073741823 to 1073741824).

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

0x2305
Excessive tracking error of J5

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

the servo gain.

(5) Consult the troubleshooting

guide.

0x2306 J5 axis overspeed
The running speed is greater

than the set maximum speed.
Reduce the speed of J5 axis.

0x2307
Strong current of J5 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2308 J5 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether the speed or

acceleration is too large.

0x2309
J5 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x230A J5 axis speed overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x230B J5 axis acceleration overlimit
When verifying the planned

output, it was found that the set

(1) In case of CP motion, reduce

position speed or increase joint

273

joint acceleration was exceeded. speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x230C
J5 axis enable

synchronization error

The robot vibrates before it is

enabled, or the robot moves due

to external reasons during the

enabling process.

Check whether there is joint

movement during power on, and

whether there is external

interference during the enabling

process.

0x230D J5 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x230E
J5 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

check for the interference source.

0x230F J5 axis disable status error

The robot failed to be disabled

at the specified time and

distance.

1. Check that servo parameter

6084 and brake parameter 0209

are correctly set.

2. Check if the load exceeds the

limit.

0x2311 J6 axis positive limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2312 J6 axis negative limit alarm
The joint limit position is

reached.

Perform positive motion to clear

the alarm.

0x2313 J6 axis drive alarm The drive has an alarm.

Perform troubleshooting by

referring to the servo manual

according to fault codes.

0x2314
J6 axis path planning out of

range

The planned value exceeds the

maximum calculation range

(-1073741823 to 1073741824).

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

0x2315
Excessive tracking error of J6

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

the servo gain.

(5) Consult the troubleshooting

guide.

0x2316 J6 axis overspeed The running speed is greater Reduce the speed of J6 axis.

274

than the set maximum speed.

0x2317
Strong current of J6 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2318 J6 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether the speed or

acceleration is too large.

0x2319
J6 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x231A J6 axis speed overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x231B J6 axis acceleration overlimit

When verifying the planned

output, it was found that the set

joint acceleration was exceeded.

(1) In case of CP motion, reduce

position speed or increase joint

speed appropriately, or adjust the

points to move away from

singularities.

(2) Check if there are any other

accompanying alarms in the

alarm record.

0x231C
J6 axis enable

synchronization error
Excessive tracking error

Check whether there is joint

movement during power on.

0x231D J6 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x231E
J6 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

check for the interference source.

0x231F J6 axis disable status error

The robot failed to be disabled

at the specified time and

distance.

1. Check that servo parameter

6084 and brake parameter 0209

are correctly set.

2. Check if the load exceeds the

limit.

0x2401 J7 axis positive limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2402 J7 axis negative limit alarm
The joint limit position is

reached.

Perform positive motion to clear

the alarm.

0x2403 J7 axis drive alarm The drive has an alarm. Perform troubleshooting by

275

referring to the servo manual

according to fault codes.

0x2404
J7 axis path planning out of

range

The planned value exceeds the

maximum calculation range

(-1073741823 to 1073741824).

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

0x2405
Excessive tracking error of J7

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

the servo gain.

(5) Consult the troubleshooting

guide.

0x2406 J7 axis overspeed
The running speed is greater

than the set maximum speed.
Reduce the speed of J7 axis.

0x2407
Strong current of J7 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2408 J7 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether the speed or

acceleration is too large.

0x2409
J7 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x240A J7 axis planned speed error
The planned speed exceeds the

limit.

Reduce the maximum speed in

joint or Cartesian space.

0x240B
J7 axis planned acceleration

error

The planned acceleration

exceeds the limit.

Reduce the maximum

acceleration or speed in joint or

Cartesian space.

0x240C
J7 axis enable

synchronization error

The robot vibrates before it is

enabled, or the robot moves due

to external reasons during the

enabling process.

Check whether there is joint

movement during power on, and

whether there is external

interference during the enabling

process.

0x240D J7 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x240E
J7 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

check for the interference source.

0x240F J7 axis disable status error The robot failed to be disabled 1. Check that servo parameter

276

at the specified time and

distance.

6084 and brake parameter 0209

are correctly set.

2. Check if the load exceeds the

limit.

0x2411 J8 axis positive limit alarm
The joint limit position is

reached.

Perform negative motion to clear

the alarm.

0x2412 J8 axis negative limit alarm
The joint limit position is

reached.

Perform positive motion to clear

the alarm.

0x2413 J8 axis drive alarm The drive has an alarm.

Perform troubleshooting by

referring to the servo manual

according to fault codes.

0x2414
J8 axis path planning out of

range

The planned value exceeds the

maximum calculation range

(-1073741823 to 1073741824).

Check whether the absolute origin

position is selected to be near the

counting limit. If the zero point is

near the limit, clear the drive

turns.

0x2415
Excessive tracking error of J8

axis

The difference between the

planned and actual positions is

too large.

(1) View the tracking error

threshold.

(2) Check for mechanical stuck.

(3) Check that the power lines are

properly connected.

(4) Check that the load matches

the servo gain.

(5) Consult the troubleshooting

guide.

0x2416 J8 axis overspeed
The running speed is greater

than the set maximum speed.
Reduce the joint speed.

0x2417
Strong current of J8 axis is

not switched on.

Strong current is not switched

on.

Check the drive circuit for

whether strong current is not

switched on.

0x2418 J8 axis torque overlimit
The actual maximum current

exceeds the limit

Check whether the speed or

acceleration is too large.

0x2419
J8 axis average load rate

overlimit

The average load rate exceeds

the limit.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x241A J8 axis planned speed error
The planned speed exceeds the

limit.

Reduce the maximum speed in

joint or Cartesian space.

0x241B
J8 axis planned acceleration

error

The planned acceleration

exceeds the limit.

Reduce the maximum

acceleration in joint or Cartesian

space.

0x241C
J8 axis enable

synchronization error

The robot vibrates before it is

enabled, or the robot moves due

to external reasons during the

Check whether there is joint

movement during power on, and

whether there is external

277

enabling process. interference during the enabling

process.

0x241D J8 axis arrival timeout
The servo takes too long to

arrive the target position.

Check whether the arrival error

threshold is too small or whether

the servo gain is not proper.

0x241E
J8 axis position feedback

error

(1) Multi-turn value changes.

(2) Encoder position jumps.

Check if the multi turn value has

been manually cleared. If not,

check for the interference source.

0x241F J8 axis disable status error

The robot failed to be disabled

at the specified time and

distance.

1. Check that servo parameter

6084 and brake parameter 0209

are correctly set.

2. Check if the load exceeds the

limit.

0x3000
Multiple fieldbuses active at

the same time

Multiple fieldbuses active at the

same time
Keep only one fieldbus active.

0x3001
Ethernet/IP connection

actively disconnected

The Ethernet/IP connection is

disconnected by client or server.

Re-initiate the Ethernet/IP

connection.

0x3002
Ethernet/IP connection down

due to network timeout

The network communication of

Ethernet/IP connection is not

available.

Check whether the network cable

is plugged in properly or in poor

contact.

0x3003
EtherCAT (fieldbus)

disconnected from master

The network cable of the

EtherCAT connection is loose,

the EtherCAT master is faulty,

or the robot system is faulty.

Check if the network cable is

plugged in or not in good contact,

check the EtherCAT master, or

contact the manufacturer.

0x3032

EtherCAT (fieldbus)

communication

synchronization failed

The synchronization signal is

not generated due to hardware

errors.

Contact the manufacturer.

0x3033

EtherCAT (fieldbus)

communication IRQ loss

overlimit

1. The data frame has been lost

or discarded at an upstream

station.

2. The performance of the host

station is poor, the jitter of the

IRQ exceeds the set value

(H0E-22) * communication

cycle.

1. Check the CPU usage of the

master.

2. Reduce the communication

time.

3. Check whether link loss occurs

on the upstream slave.

0x3034
EtherCAT (fieldbus)

EEPROM loading error

During program start-up, the

first 8 bytes of data in the

EEPROM were wrong, causing

EtherCAT slave to fail to start.

Contact the manufacturer

(Re-burn the XML file).

0x3035
EtherCAT (fieldbus)

initialization error

EtherCAT (fieldbus)

initialization error

Hardware failure, please contact

the manufacturer.

0x3036
EtherCAT (fieldbus) state

switching error

Bad state switching due to

incorrect operation of the

master or human error.

Contact the manufacturer.

278

0x3037
DC not enabled for EtherCAT

(fieldbus) slave

In DC mode, there is no

synchronization signal causing

abnormal movement due to

master fault or improper master

operation

Contact the manufacturer.

0x3038
EtherCAT (fieldbus) PDO

overlimit

EtherCAT (fieldbus) PDO

overlimit

Check whether the number of

PDOs configured for the master

exceeds the limit.

0x3039
EtherCAT (fieldbus) link

missing

The physical connection of the

data link is unstable or the

process data is lost due to

plug-in/plug-out of the network

cable.

Check whether the network cable

is connected properly and

whether the application site

suffers from strong vibration.

0x303A
EtherCAT (fieldbus) link

interfered

The data is lost due to EMC

interference, poor quality of the

network cable or improper

connection.

Check whether proper grounding

is performed and rectify EMC

measures. Check whether the

network cable used is provided by

Inovance and whether the

network cable is properly

connected.

0x303B
EtherCAT (fieldbus) data

forward error

The upstream station detects

that the data frame has been

corrupted, leading to a data

transfer error.

Check the upstream station to

locate the fault cause.

0x303C
EtherCAT (fieldbus) received

no data

1. The data frame has been lost

or discarded at an upstream

station.

2. The performance of the host

station is poor, the jitter of the

IRQ exceeds the set value

(H0E-22) * communication

cycle.

1. Check the CPU usage of the

master.

2. Reduce the communication

time.

3. Check whether link loss occurs

on the upstream slave.

0x3100
Failed to save configuration

file

The system is busy or there is a

problem with the file system.

1. Try to save again.

2. Contact the manufacturer.

0x3101 Failed to load DSP0 firmware

 FPGA firmware error or

startup abnormality

1. Restart the robot.

2. Contact the manufacturer.

0x3102
EtherCAT slave xml file

loading failed

Xml file error or startup

exception

1. Restart the robot.

2. Contact the manufacturer.

0x5001
J1 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x5002
J1 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

279

mechanical parts and drive.

0x5003
J2 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x5004
J2 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x5005
J3 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x5006
J3 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x5007
J4 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x5008
J4 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x5009
J5 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x500A
J5 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x500B
J6 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x500C
J6 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x500D
J7 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x500E
J7 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x500F
J8 axis torque overlimit

warning

The actual maximum current

exceeds the limit for warning.

Check whether the speed or

acceleration is too large.

0x5010
J8 axis average load rate

overlimit warning

The average load rate exceeds

the limit for warning.

Check whether speed and

acceleration are too large.

Troubleshoot the brake,

mechanical parts and drive.

0x5011 J1 axis servo warning Warning occurs on the servo of View the parameter H0B-45 and

280

J1 axis. handle the problem according to

the user guide.

0x5012 J2 axis servo warning
Warning occurs on the servo of

J2 axis.

View the parameter H0B-45 and

handle the problem according to

the user guide.

0x5013 J3 axis servo warning
Warning occurs on the servo of

J3 axis.

View the parameter H0B-45 and

handle the problem according to

the user guide.

0x5014 J4 axis servo warning
Warning occurs on the servo of

J4 axis.

View the parameter H0B-45 and

handle the problem according to

the user guide.

0x5015 J5 axis servo warning
Warning occurs on the servo of

J5 axis.

View the parameter H0B-45 and

handle the problem according to

the user guide.

0x5016 J6 axis servo warning
Warning occurs on the servo of

J6 axis.

View the parameter H0B-45 and

handle the problem according to

the user guide.

0x5017 J7 axis servo warning
Warning occurs on the servo of

J7 axis.

View the parameter H0B-45 and

handle the problem according to

the user guide.

0x5018 J8 axis servo warning
Warning occurs on the servo of

J8 axis.

View the parameter H0B-45 and

handle the problem according to

the user guide.

0x50E1 Look-ahead error Look-ahead error

Save the error message on the

system diagnostics page and

contact the manufacturer.

0x50E2
Adaptive speed planning

verification error

Adaptive speed planning

verification error

Save the error message on the

system diagnostics page and

contact the manufacturer.

0x50E3
General speed planning

verification error

General speed planning

verification error

Save the error message on the

system diagnostics page and

contact the manufacturer.

0x50E4 Trajectory time too long
The time of a single trajectory

exceeds 100 seconds.

This does not affect the system

operation, but may cause

unexpected problems. The speed

and acceleration should be

increased to reduce the execution

time of a single instruction.

0x50E5

Smooth transition between

instructions degenerates to

zero

Due to various limitations, the

instruction smooth transition

becomes 0.

This does not affect normal use,

but be aware that transition

failures can reduce execution

efficiency.

0x50E6 Stop time too long
Stop time exceeded 500

milliseconds.

This does not affect normal use,

but be aware that the robot cannot

281

be operated again before it is

completely stopped.

0x50EE
EtherCAT communication

feedback error

The speed is abnormal when the

robot coasts to stop.

Save the error message on the

system diagnostics page and

contact the manufacturer.

0x8001 No network device
The FPGA module is not

functioning properly.

Hardware device error, contact

the manufacturer.

0x8002 No master found
Failed to request EtherCAT

master

Restart the controller. If the

problem persists, it is a hardware

device error, contact the

manufacturer.

0x8003 Invalid domain
Failed to request EtherCAT

master domain resource

Restart the controller. If the

problem persists, it is a hardware

device error, contact the

manufacturer.

0x8004 Slave not found
The slave could not be found

when configuring it.

Restart the controller or contact

the manufacturer to check the

EtherCAT slave device.

0x8005 Invalid process data Error configuring slave PDO

Restart the controller or contact

the manufacturer to check the

EtherCAT slave device.

0x8006 Invalid service data Error configuring slave SDO

Restart the controller or contact

the manufacturer to check the

EtherCAT slave device.

0x8007 Invalid entry object
Error configuring slave PDO

entry

Restart the controller or contact

the manufacturer to check the

EtherCAT slave device.

0x8008
Domain memory address

allocation error

Failed to request EtherCAT

master domain memory

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8009 Failed to activate master
Failed to apply for activation of

EtherCAT master

Restart the controller. If the

problem persists, contact the

manufacturer.

0x800A Service data public error

Length mismatch or slave not

found while configuring slave

SDO

Restart the controller. If the

problem persists, contact the

manufacturer to check the

EtherCAT slave deice.

0x800B
Registration cycle callback

error

Failed to create timed interrupt

task

Restart the controller. If the

problem persists, contact the

manufacturer.

0x800C
Process communication

configuration error
Error configuring PDO buffer

Restart the controller. If the

problem persists, contact the

manufacturer.

0x800D Module initialization error EtherCAT module resource Restart the controller. If the

282

initialization error problem persists, contact the

manufacturer.

0x800E Error parsing configuration
Failed to parse the slave

configuration

Check the secondary development

configuration and reconfigure if

necessary

0x800F
Channel parameter

configuration error

Failure to configure the interval

between channel

synchronization signals and

interrupts

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8010 Domain registration error
Domain registration failure

detected

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8011 Timer creation error
Failed to create timer due to

system reasons

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8012 Timer startup error
Failed to start timer due to

system reasons

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8013
ECAT communication cycle

configuration error

ECAT communication cycle is

not an intergral number of

250us.

Check the secondary development

configuration and reconfigure if

necessary.

0x8014 ECAT version selection error
Wrong version of ECAT is

used.

ECAT version error, contact the

manufacturer.

0x8015
ECAT servo slave quantity

error

The number of configured

ECAT servo slaves is smaller

than 1.

Check that the number of ECAT

servo slaves is configured

correctly.

0x8016 ECAT I/O slave quantity error

The number of configured

ECAT I/O slaves is smaller than

0.

Check that the number of ECAT

I/O slaves is configured correctly.

0x8017
ECAT I/O module quantity

error

The number of configured

ECAT I/O slaves is smaller than

1.

Check that the number of ECAT

I/O slaves is configured correctly.

0x8018 ECAT I/O type error
The ECAT I/O type is

unknown.

Check the secondary development

configuration and reconfigure if

necessary.

0x8019 ECAT I/O not supported
The type of configured ECAT

I/O is currently not supported.

Check the secondary development

configuration and reconfigure if

necessary.

0x801A ECAT memory request error

Current memory request failed

due to excessive system

resource usage.

Restart the controller. If the

problem persists, contact the

manufacturer.

0x801B
ECAT alarm shared memory

request error

Failed to request ECAT alarm

shared memory

Restart the controller. If the

problem persists, contact the

manufacturer.

283

0x801C
ECAT servo operation mode

error

The servo control mode is not

CSP-8, CSV-9, or CST-10.

Check the secondary development

configuration and reconfigure if

necessary.

0x801D ECAT register error Failed to access slave register

Check that the slave registers to

be accessed are correct or allowed

to be accessed.

0x801E

The number of configured

ECAT I/Os does not match

the number of online I/Os.

The number of configured

ECAT I/Os does not match the

number of online I/Os.

Check the number of configured

ECAT I/Os and the number of

online I/Os.

0x801F

The number of configured

ECAT servos does not match

the number of online servos.

The number of configured

ECAT servos does not match

the number of online servos.

Check the number of configured

ECAT servos and the number of

online servos.

0x8020
ECAT servo supplier code not

supported

The slave device is not

supported.

Check that all slave devices in all

ECAT networks are supported.

0x8028 Error writing buffer
Failed to write buffer due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8029 Error writing start command
Failed to write start command

error due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x802A Error reading status register
Failed to read status register due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x802B Error reading data link status
Failed to read the data link

status due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x802C
Error reading service data

channel

Failed to read the service data

channel due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x802D
Error reading service data

length

Failed to read the service data

length due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x802E Service data length error
Service data length error due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x802F Service data reception error
Service data reception error due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8030 Service data channel busy
Service data channel busy error

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8031 Service data message error
Service data message error due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

284

0x8032
Communication error in

reading process data

Error reading process data due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8033
Error reading process data

length

Error in the length of the

process data buffer due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8034 Process data length error

Error in the length of the

process data buffer due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8035 Process data reception error
Failed to receive process data

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8036 Error opening network device
Failed to open network device

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8037
Underlying communication

error

The underlying communication

control error is caused by a

hardware error.

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8038
Underlying communication

error

Underlying communication

read error due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8039
Underlying communication

error

Underlying communication

write error due to hardware

error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x803A Error reading send time stamp
Failed to read send time stamp

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x803B
Error reading receive time

stamp

Failed to read receive time

stamp due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x803C
Error reading remaining

process data

Failed to read the remaining

process data due to hardware

error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x803D
Error reading application time

stamp

Failed to read application time

stamp due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x803E Error opening fieldbus LED
Failed to open fieldbus LED

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x803F Field bus LED IOCTRL error
Fieldbus LED IOCTRL error

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8040 Invalid underlying hardware
The underlying hardware

module 1 is invalid due to a

Restart the controller. If the

problem persists, contact the

285

hardware error. manufacturer.

0x8041 Bottom hardware invalid

The underlying hardware

module 2 is invalid due to a

hardware error.

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8042 ECAT slave disconnected ECAT slave is disconnected. Check the ECAT device.

0x8043
Non-ECAT slave device

connected

A non-ECAT slave device is

connected.

Check that the connected device

meets the requirements.

0x8044
ECAT network port 0 not

connected

ECAT network port 0 is not

connected.
Check the status of ECAT port 0.

0x8045
ECAT network port 1

disconnection error

ECAT network port 1 is not

connected.
Check the status of ECAT port 1.

0x8046
ECAT startup time setting

error

ECAT startup time is

incorrectly set due to a

hardware error.

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8047 ECAT slave status error

The read ECAT slave status

word indicates that the status is

abnormal.

Check the error codes to

troubleshoot and restart the

system.

0x8048
Failed to open EOE virtual

NIC device

System driver loading is not

normal.

Confirm the system software

version and restart the system.

0x805C Toggle bit unchanged
The slave feeds back that the

toggle bit is not changed.

Re-initiate a SDO access, or

contact the manufacturer.

0x805D SDO protocol timeout
The slave feeds back that the

SDO protocol timed out.

Re-initiate a SDO access, or

contact the manufacturer.

0x805E

Client/Server command

specifier not valid or

unknown

The slave feeds back that

Client/Server command

specifier is not valid or

unknown.

Internal system error, contact the

manufacturer.

0x805F Object inaccessible
The slave feeds back that the

object is not accessible.
This operation is prohibited.

0x8060
Error reading an write-only

object

The slave feeds back that an

error occurs while trying to read

a write-only object.

This operation is prohibited.

0x8061
Error writing an read-only

object

The slave feeds back that an

error occurs while trying to

write a read-only object.

This operation is prohibited.

0x8062
Object does not exist in the

object directory

The slave feeds back that the

object does not exist in the

object directory.

Check that the object exists in the

object dictionary.

0x8063
Object cannot be mapped into

the PDO

The slave feeds back that the

object cannot be mapped to the

PDO.

Check that the object to be

mapped is correct.

0x8064

The length of the object to be

mapped exceeds the PDO

length.

The slave feeds back that the

length of the object to be

mapped exceeds the PDO

Check that the length of the

object to be mapped is correct.

286

length.

0x8065 Basic parameter incompatible

The slave feeds back that the

base parameters are

incompatible.

Check that the basic parameters

of the slave are compatible.

0x8066
Device internal

incompatibility

The slave feeds back that the

device is internally

incompatible.

Restart the controller and slave. If

the problem persists, contact the

manufacturer.

0x8067
Access failure due to

hardware causes

The slave feeds back that the

access failed due to hardware

causes.

Restart the controller and slave. If

the problem persists, contact the

manufacturer.

0x8068
Service parameter length

mismatch

The slave feeds back that the

service parameter length

mismatches.

Check that the length of the

service parameter of the accessed

slave is correct.

0x8069 Service parameter too long

The slave feeds back that the

service parameter length is too

long.

Check that the length of the

service parameter of the accessed

slave is correct.

0x806A Service parameter too short

The slave feeds back that the

service parameter length is too

short.

Check that the length of the

service parameter of the accessed

slave is correct.

0x806B Subindex does not exist
The slave feeds back that the

subindex does not exist.

Check that the object subindex

exists.

0x806C Parameter value out of range
The slave feeds back that the

parameter value is out of range.

Check that the parameters are set

correctly.

0x806D
Written parameter value too

large

The slave feeds back that the

written parameter value is too

large.

Check that the parameters are set

correctly.

0x806E
Written parameter value too

small

The slave feeds back that the

written parameter value is too

small.

Check that the parameters are set

correctly.

0x806F
Maximum value smaller than

minimum value

The slave feeds back that the

maximum value is less than the

minimum value.

Check that the values are set

correctly.

0x8070
Error transferring or storing

data

The slave feeds back that the

data failed to be transferred or

stored.

Restart the controller and slave. If

the problem persists, contact the

manufacturer.

0x8071
Error storing data due to local

control

The slave feeds back that the

data failed to be stored due to

local control.

Restart the controller and slave. If

the problem persists, contact the

manufacturer.

0x8072
Error storing data due to

device status

The slave feeds back that the

data failed to be stored due to

device status.

Restart the controller and slave. If

the problem persists, contact the

manufacturer.

0x8073

Object dictionary dynamic

generation fails or no object

dictionary is present.

The slave feeds back that the

object dictionary dynamic

generation fails or no object

Check that the object dictionary

exists.

287

dictionary is present.

0x8079 IR-LINK initialization error

Failed to initialize IR-LINK due

to IR-Link configuration or

hardware connection error

Check the IR-Link configuration

or hardware connection.

0x807A
Error configuring IR-Link

communication cycle

The IR-Link communication

cycle is not an integral number

of 250us.

Check the IR-Link

communication cycle

configuration.

0x807B IR-Link version error
Wrong version of IR-Link is

used.
Contact the manufacturer.

0x807C
IR-Link servo slave quantity

error

The number of configured

IR-Link servos is less than 0.

Check the number of configured

IR-Link servos.

0x807D IR-Link slave quantity error
The number of configured

IR-Link slaves is less than 1

Check the number of configured

IR-Link slaves.

0x807E
IR-Link module quantity

error

The number of configured

IR-Link modules is less than 1.

Check the number of configured

IR-Link modules.

0x807F IR-Link type error
The type of configured IR-Link

I/O is unrecognized.

Check the type of configured

IR-Link I/O.

0x8080 IR-Link not supported
The configured IR-Link is not

supported.
Check the IR-Link configuration.

0x8081 IR-Link memory request error

Current memory request failed

due to excessive system

resource usage.

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8082
IR-LINK error shared

memory request error

IR-Link error shared memory

request failed.

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8083
IR-LINK slave operation

mode error

IR-Link slave control mode is

not MODE-8.

Check the operation mode of

IR-Link slave.

0x8084 IR-LINK register error Failed to access slave register

Check that the slave registers to

be accessed are correct or allowed

to be accessed.

0x8085

The number of configured

IR-Link I/Os does not match

the number of online I/Os.

The number of configured

IR-Link I/Os does not match the

number of online I/Os.

Check the number of configured

IR-Link I/Os and the number of

online I/Os.

0x8086

The number of configured

IR-Link slaves does not

match the number of online

slaves.

The number of configured

IR-Link slaves does not match

the number of online slaves.

Check the number of configured

IR-Link slaves and the number of

online slaves.

0x8087
IR-Link servo supplier codes

not supported

The IR-Link servo supplier

codes are not supported.
Check the IR-Link configuration.

0x8090 Error writing buffer
Failed to write buffer due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8091
Error reading service data

channel

Read service data channel error

due to hardware error

Restart the controller. If the

problem persists, contact the

288

manufacturer.

0x8092
Error reading service data

length

Failed to read the service data

length due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8093 Service data length error
Service data length error due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8094 Service data reception error
Service data reception error due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8095 Service data channel busy
Service data channel busy error

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8096 Service data message error
Service data message error due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8097
Communication error in

reading process data

Error reading PDO due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8098
Error reading process data

length

Failed to read the process data

length due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8099 Process data length error
Process data length error due to

hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x809A Process data reception error
Process data reception error due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x809B Error opening network device
Failed to open network device

due to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x809C GPMC IR-Link read error
GPMC IR-Link read error due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x809D GPMC IR-Link write error
GPMC IR-Link write error due

to hardware error

Restart the controller. If the

problem persists, contact the

manufacturer.

0x809E IR-Link slave disconnected
The IR-Link slave is

disconnected.

Check the status of IR-Link

device.

0x809F Non-IR-Link slave connected
A non-IR-Link slave device is

connected.

Check that the connected device

meets the requirements.

0x80A0
IR-LINK network port 0 not

connected

The IR-LINK network port 0 is

not connected.

Check the connection of IR-Link

port 0.

0x80A1 IR-LINK network port 1 not The IR-LINK network port 1 is Check the connection of IR-Link

289

connected not connected. port 1.

0x80A2
IR-LINK startup time setting

error

IR-LINK startup time is

incorrectly set due to a

hardware error.

Restart the controller. If the

problem persists, contact the

manufacturer.

0x8142 ECAT slave 1 disconnected
The ECAT slave 1 is

disconnected.
Check the ECAT device.

0x819E
IR-LINK slave 1

disconnected

The IR-LINK slave 1 is

disconnected.

Check the connection status of

IR-LINK device.

0x8242 ECAT slave 2 disconnected
The ECAT slave 2 is

disconnected.
Check the ECAT device.

0x829E
IR-LINK slave 2

disconnected

The IR-LINK slave 2 is

disconnected.

Check the connection status of

IR-LINK device.

0x8342 ECAT slave 3 disconnected
The ECAT slave 3 is

disconnected.
Check the ECAT device.

0x839E
IR-LINK slave 3

disconnected

The IR-LINK slave 3 is

disconnected.

Check the connection status of

IR-LINK device.

0x8442 ECAT slave 4 disconnected
The ECAT slave 4 is

disconnected.
Check the ECAT device.

0x849E
IR-LINK slave 4

disconnected

The IR-LINK slave 4 is

disconnected.

Check the connection status of

IR-LINK device.

0x8542 ECAT slave 5 disconnected
The ECAT slave 5 is

disconnected.
Check the ECAT device.

0x859E
IR-LINK slave 5

disconnected

The IR-LINK slave 5 is

disconnected.

Check the connection status of

IR-LINK device.

0x8642 ECAT slave 6 disconnected
The ECAT slave 6 is

disconnected.
Check the ECAT device.

0x869E
IR-LINK slave 6

disconnected

The IR-LINK slave 6 is

disconnected.

Check the connection status of

IR-LINK device.

0x8742 ECAT slave 7 disconnected
The ECAT slave 7 is

disconnected.
Check the ECAT device.

0x879E
IR-LINK slave 7

disconnected

The IR-LINK slave 7 is

disconnected.

Check the connection status of

IR-LINK device.

0x8842 ECAT slave 8 disconnected
The ECAT slave 8 is

disconnected.
Check the ECAT device.

0x889E
IR-LINK slave 8

disconnected

The IR-LINK slave 8 is

disconnected.

Check the connection status of

IR-LINK device.

0x8942 ECAT slave 9 disconnected
The ECAT slave 9 is

disconnected.
Check the ECAT device.

0x899E
IR-LINK slave 9

disconnected

The IR-LINK slave 9 is

disconnected.

Check the connection status of

IR-LINK device.

0x8A42 ECAT slave 10 disconnected
The ECAT slave 10 is

disconnected.
Check the ECAT device.

0x8A9E
IR-LINK slave 10

disconnected

The IR-LINK slave 10 is

disconnected.

Check the connection status of

IR-LINK device.

290

0x8B42 ECAT slave 11 disconnected
The ECAT slave 11 is

disconnected.
Check the ECAT device.

0x8B9E
IR-LINK slave 11

disconnected

The IR-LINK slave 11 is

disconnected.

Check the connection status of

IR-LINK device.

0x8C42 ECAT slave 12 disconnected
The ECAT slave 12 is

disconnected.
Check the ECAT device.

0x8C9E
IR-LINK slave 12

disconnected

The IR-LINK slave 12 is

disconnected.

Check the connection status of

IR-LINK device.

0x8D42 ECAT slave 13 disconnected
The ECAT slave 13 is

disconnected.
Check the ECAT device.

0x8D9E
IR-LINK slave 13

disconnected

The IR-LINK slave 13 is

disconnected.

Check the connection status of

IR-LINK device.

0x8E42 ECAT slave 14 disconnected
The ECAT slave 14 is

disconnected.
Check the ECAT device.

0x8E9E
IR-LINK slave 14

disconnected

The IR-LINK slave 14 is

disconnected.

Check the connection status of

IR-LINK device.

0x8F42 ECAT slave 15 disconnected
The ECAT slave 15 is

disconnected.
Check the ECAT device.

0x8F9E
IR-LINK slave 15

disconnected

The IR-LINK slave 15 is

disconnected.

Check the connection status of

IR-LINK device.

0xE001 Normal operation Normal operation No action required.

0xE002 Firmware loading failed
Unable to get firmware from

SD card

Check whether it is in test mode,

check the SD content.

0xE003 Firmware loading failed
Unable to get the correct

firmware from Flash
Re-upgrade the system.

0xE004 Firmware loading failed FPGA failed to reset

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE005 Firmware loading failed FPGA transfer error

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE006 Firmware loading failed Handshake with FPGA failed

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE007
Control channel 1 running

normally

Control channel 1 running

normally
No action required.

0xE008
Failed to allocate memory to

control channel 1
Insufficient memory

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE009 Firmware loading failed
Firmware not found or

information not available

Restart the controller. If the

problem persists, upgrade the

controller.

0xE00A Firmware loading failed
Firmware not found or

information not available

Restart the controller. If the

problem persists, upgrade the

291

controller.

0xE00B
Control channel 1 firmware

length out of range

Control channel 1 firmware

length out of range

Restart the controller. If the

problem persists, upgrade the

controller.

0xE00C Firmware loading failed
Unable to communicate with

FPGA

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE00D
Failed to reset control channel

1
Failed to reset control channel 1

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE00E SPI communication failure Failed to send start word

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE00F SPI communication failed POS failed

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE010

Failed to regulate

communication rate of

channel 1

Failed to regulate

communication rate of channel

1

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE011
Data loading timeout in

control channel 1

Data loading timeout in control

channel 1

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE012
Control channel 1 running

response is abnormal.

Control channel 1 running

response is abnormal.

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE013
Control channel 0 running

normally

Control channel 0 running

normally
No action required.

0xE014
Failed to allocate memory to

control channel 0
Insufficient memory

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE015 Firmware loading failed
Firmware not found or

information not available

Restart the controller. If the

problem persists, upgrade the

controller.

0xE016 Firmware loading failed
Firmware not found or

information not available

Restart the controller. If the

problem persists, upgrade the

controller.

0xE017
Control channel 0 firmware

length out of range

Control channel 0 firmware

length out of range

Restart the controller. If the

problem persists, upgrade the

controller.

0xE018 Firmware loading failed
Unable to communicate with

FPGA

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE019
Failed to reset control channel

0
Failed to reset control channel 0

Restart the controller. If the

problem persists, contact the

292

manufacturer.

0xE01A SPI communication failure Failed to send start word

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE01B SPI communication failure POS failed

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE01C

Failed to regulate

communication rate of

channel 0

Failed to regulate

communication rate of channel

0

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE01D
Data loading timeout in

control channel 0

Data loading timeout in control

channel 0

Restart the controller. If the

problem persists, contact the

manufacturer.

0xE01E
Control channel 0 running

response is abnormal.

Control channel 0 running

response is abnormal.

Restart the controller. If the

problem persists, contact the

manufacturer.

293

Appendix 2: API Instructions and Connection Fault Table

API Instructions

(1) API Instructions

No

.

Function Name Description Parameter Return

Value

Note

1 int IMC100_Init_ETH(unsigned int

ipAddr,unsigned short ipPort,int

timeOut=5, int comId=0)

Establishes a

robotic network

connection

ipAddr: Robot controller

network IP address, host

byte order

ipPort: Robot controller

network port number, default

2222

timeOut: Communication

timeout setting, default 5s

comId: Connection number,

marking different

connections under the same

destination IP and port

number, default 0, maximum

4 (same below);

0:

Connectio

n success;

＜0:

Failure

1) Up to 5

different

connectio

ns

supported

by the

host

controller;

up to 4

different

connectio

ns

supported

by the

controller

2) Scope

of the

connectio

n number:

The same

process on

the host

controller.

*Any

difference

in the IP

and port

number

between

the host

controller

and the

controller

is

considere

d a

294

different

connectio

n.

2 int IMC100_Exit_ETH(int comId=0) Closes the robot

network

connection

comId: Connection number,

which marks the

corresponding connection

(this parameter is not

repeated below)

0:

Success;

＜0:

Failure

3 int IMC100_EmergStop(int cmd, int

comId=0)

Controls

emergency stop

switch

cmd: Emergency stop

command, 1-Presses

emergency stop, 0-Releases

emergency stop

0:

Success;

＜0:

Failure

4 int IMC100_MotorEnable(int cmd, int

comId=0)

Enables or

disables the

motor

cmd: Motor enable

command, 1-Enable,

0-Disable

0:

Success;

＜0:

Failure

Read the

enable

status 300

ms after

the enable

command

is issued.

5 int IMC100_ResetErr(int comId=0) Fault reset 0:

Success;

＜0:

Failure

The

command

is delayed

by approx.

50ms.

6 int IMC100_Set_Mode(int mode, int

comId=0)

Sets the system

operating mode

mode: 1-Teach, 2-Play 0:

Success;

＜0:

Failure

7 int IMC100_PrgCtrl(int cmd, int

comId=0)

Controls the

teaching program

cmd: Control command,

0-Stop, 1-Start/Resume

0:

Success;

＜0:

Failure

8 int IMC100_BackStartLine(int

comId=0)

Returns the

program to the

start line

 0:

Success;

＜0:

Failure

9 int IMC100_Set_Vel(int val, int

comId=0)

Sets the current

operating speed

level

val: Current speed level,

range 1-100

0:

Success;

＜0:

Failure

295

10 int IMC100_Set_AccRamp(double

startVal, double endVal , int comId=0)

Sets the jerk of

the motion

segment in the

data streaming

mode

startVal: Speed percentage of

the start segment, range

10.0-100.0

endVal: Speed percentage of

the end segment, range

10.0-100.0

0:

Success;

＜0:

Failure

Only valid

in data

streaming

mode.

11 int IMC100_Set_RapidMove(int

movType, int enableFlag， int comId=0);

Sets the optimal

trajectory

planning

 movType: Motion type,

0-CP motion, 1-PTP motion

enableFlag: 0-Open optimal

trajectory planning, 1-Close

optimal trajectory planning

0:

Success;

＜0:

Failure

Only valid

in data

streaming

mode.

12 int IMC100_Set_FlyMode(int cpMode,

int flyMode, int comId);

Sets the

transition mode

of motion

instruction

cpMode: Motion type, 0-CP

motion

flyMode: Transition mode,

0-Free transition, 1-Fixed

path transition

0:

Success;

＜0:

Failure

Only valid

in data

streaming

mode.

13 int IMC100_Set_FlyPress(int

flyPressPos, int flyPressOrient, int

comId);

Sets the

transition stress

for a fixed path

flyPressPos: Position

transition stress, range

50-200

flyPressOrient: Orientation

transition stress, range

50-200

0:

Success;

＜0:

Failure

Only valid

in data

streaming

mode.

14 int IMC100_DsMode(int cmd, int

comId=0)

Controls the data

streaming mode

cmd: Data streaming

command, 0-Off, 1-On,

2-Pause, 3-Resume

0:

Success;

＜0:

Failure

When the

data

streaming

is on, if

the robot

is disabled

the data

streaming

is paused.

15 int IMC100_Set_DO(int num, int status,

int comId=0)

Sets the DO

status by bit

(DOs that can be

controlled by

RC)

num: DO bit sequence

number

status: DO status, 0-Off,

1-On

0:

Success;

＜0:

Failure

296

16 int IMC100_Set_SlewMode(int cmd, int

comId=0);

Set the rotation

optimization for

J4 axis of

SCARA robots

or J6 axis of

standard 6-axis

robot

cmd: Rotation optimization

mode

0 - Optimization not applied,

depending on the arm

parameter of the position

variable.

1 - Optimization mode 1

applied, to ensure that J4/J6

is within the range of -180°

to 180° during movement.

2 - Ensure that J4/J6 moves

in the closest possible

manner, and the robot will

calculate whether movement

to the target point requires

the J4/J6 to rotated by 180°.

If the angle difference is ≤

180°, the robot will fully

move to the target point. If it

is >180°, J4/J6 will move in

the opposite direction and

ultimately moves to a

position that is 360° away

from the position of J4/J6 at

the target point. During the

movement, if the reverse

movement of J4/J6 exceeds

the limit range of the robot,

it will stop moving and issue

an alarm.

3 - Ensure that J4/J6 moves

in the closest possible

manner. The difference from

mode 2 is that if the reverse

movement of J4/J6 exceeds

the limit range, there will be

no alarm, but instead no

reverse movement will be

carried out and the original

normal movement will be

fully adopted.

0:

Success;

＜0:

Failure

Only valid

in stream

mode, the

data will

be cleared

after data

streaming

mode is

turned off.

17 int IMC100_Set_DOGroup(int num, int

status, int comId=0)

Sets the DO

status by group

num: DO group number,

range 0-7, depending on

actual configuration status:

0:

Success;

＜0:

297

DO status in each group,

range 0-255, where bit0-bit7

corresponds to the DO status

with the lowest to highest

group number

Failure

18 int IMC100_Set_DA(int num, float val,

int comId=0)

Sets the output

value of DA by

number

num: DA number, range

0-15

val: DA value, 0mA to 20mA

for current type, -10V to 10V

for voltage type, depending

on the DA channel type

0:

Success;

＜0:

Failure

19 int IMC100_InchMode(int cmd, int

comId=0)

Controls the

jogging teach

mode

cmd: Jogging teach mode

command, 0-Off, 1-On

0:

Success;

＜0:

Failure

20 int IMC100_Set_InchStep(int val, int

comId=0)

Sets the step size

of the jog motion

Val: Step size, range 1-4,

where 1 indicates 0.05, 2

indicates 0.5 for step size, 3

indicates 2, 4 indicates that

the step size is the setting

value of jog parameter. The

unit is degree in the joint

coordinate system and mm

in the base coordinate

system.

0:

Success;

＜0:

Failure

21 int IMC100_Jog(int mode, int axis, int

cmd, int comId=0)

Teach motion

command

Mode: Teaching mode,

0-Joint coordinate teaching,

1-Cartesian coordinate

teaching

axis: Axis number, range

1-6, corresponding to J1-J6

axis in joint coordinate

teaching, and

X/Y/Z/RZ/RY/RX axis in

Cartesian coordinate

teaching

cmd: Teach command,

0-Stop, 1-Forward teach,

-1-Reverse teach

0:

Success;

＜0:

Failure

Effective

after data

streaming

mode is

turned off

in teach

mode

22 int IMC100_Inch(int mode, int axis, int

cmd, int comId=0)

Jog motion

command

Mode: Teaching mode,

0-Joint coordinate teaching,

1-Cartesian coordinate

teaching

axis: Axis number, range

0:

Success;

＜0:

Failure

Effective

after data

streaming

mode is

turned off

298

1-6, corresponding to J1-J6

axis in joint coordinate

teaching, and

X/Y/Z/RZ/RY/RX axis in

Cartesian coordinate

teaching

cmd: Teach command,

1-Forward teach, -1-Reverse

teach

in teach

mode

23 int IMC100_Home(int num, int

comId=0)

Homing motion

command

num: Origin number, range

0-4

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

24 int IMC100_MovJ_P(int posNum, int

vel=100, int zone=0, int comId=0)

Moves to a

global position

with a specified

number through

joint

interpolation

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100, default 100

zone: Interpolation precision,

range -1 to 5, default 0 (-1

for Fine, 0-5 for Z[0]-Z[5],

same below)

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

25 int IMC100_MovL_P(int posNum, int

vel=100, int zone=0, int comId=0)

Moves to a

global position

with a specified

number through

linear

interpolation

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100, default 100

zone: Interpolation precision,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

26 int IMC100_MovC_P(int posMidNum,

int posDstNum, int vel=100, int zone=0,

int comId=0)

Moves to a

global position

with a specified

number through

circular

interpolation

PosMidNum: Global

position number at an

intermediate point of an arc,

range 0-1000

posDstNum: Global position

number at the end of an arc,

range 0-1000

vel: Motion speed, range

1-100, default 100

zone: Interpolation precision,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

27 int IMC100_MovJ2(ROBOT_POS pos,

int vel=100, int zone=0, int comId=0)

Moves to a

position with a

specified value

pos: Position parameter

structure, see definition

vel: Motion speed, range

0:

Success;

＜0:

Only

effective

in data

299

through joint

interpolation

1-100, default 100

zone: Interpolation accuracy,

range -1 to 5, default 0

Failure streaming

mode.

28 int IMC100_MovL2(ROBOT_POS pos,

int vel=100, int zone=0, int comId=0)

Moves to a

position with a

specified value

through linear

interpolation

pos: Position parameter

structure, see definition

vel: Motion speed, range

1-100, default 100

zone: Interpolation accuracy,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

29 int IMC100_MovC2(ROBOT_POS

posMid, ROBOT_POS posDst, int

vel=100, int zone=0, int comId=0)

Moves to a

position with a

specified value

through circular

interpolation

posMid: Position parameter

of an intermediate point of

an arc

posDst: Position of the end

point of the arc

vel: Motion speed, range

1-100, default 100

zone: Interpolation accuracy,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

30 int IMC100_MovJ_P_IO(int posNum,

int vel, int zone, MOV_IO *movIo, int

ioNum, int comId=0)

Moves to a

global position

with a specified

number through

joint

interpolation

while controlling

the

corresponding

I/O

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

groups of the I/O control

structure, range 1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

31 int IMC100_MovL_P_IO(int posNum,

int vel, int zone, MOV_IO *movIo, int

ioNum,int comId=0)

Moves to a

global position

with a specified

number through

linear

interpolation

while controlling

the

corresponding

I/O

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

groups of the I/O control

structure, range 1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

300

32 int IMC100_MovC_P_IO(int

posMidNum, int posDstNum, int vel, int

zone, MOV_IO *movIo, int ioNum,int

comId=0)

Moves to a

global position

with a specified

number through

circular

interpolation

while controlling

the

corresponding

I/O

posMidNum: Global

position number at an

intermediate point of an arc,

range 0-1000

posDstNum: Global position

number at the end of an arc,

range 0-1000

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: Number of groups of

I/O control structure, range

1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

33 int IMC100_MovJ2_IO(ROBOT_POS

pos, int vel, int zone, MOV_IO *movIo,

int ioNum, int comId=0)

Moves to a

position with a

specified value

through joint

interpolation

while controlling

the

corresponding

I/O

pos: Position parameter

structure, see definition

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

groups of the I/O control

structure, range 1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

34 int IMC100_MovL2_IO(ROBOT_POS

pos, int vel, int zone, MOV_IO *movIo,

int ioNum, int comId=0)

Moves to a

position with a

specified value

through linear

interpolation

while controlling

the

corresponding

I/O

pos: Position parameter

structure, see definition

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

groups of the I/O control

structure, range 1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

35 int IMC100_MovC2_IO(ROBOT_POS

posMid, ROBOT_POS posDst, int vel,

int zone, MOV_IO *movIo, int ioNum,

int comId=0)

Moves to a

position with a

specified value

through circular

interpolation

while controlling

posMid: Position parameter

at an intermediate point of an

arc

posDst: Position parameter

at the end of an arc

vel: Motion speed, range

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

301

the

corresponding

I/O

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: Number of groups of

I/O control structure, range

1-3

36 int IMC100_Jump_P(int posNum, int

vel=100, int zone=0, int comId=0)

Moves to a

global position

with a specified

number through

jump

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100, default 100

zone: Interpolation precision,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

37 int IMC100_JumpL_P(int posNum, int

vel=100, int zone=0, int comId=0)

Moves to a

global position

with a specified

number through

linear jump

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100, default 100

zone: Interpolation precision,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

38 int IMC100_Jump2(ROBOT_POS pos,

int vel=100, int zone=0, int comId=0)

Moves to a

position with a

specified value

through jump

pos: Position parameter

structure, see definition

vel: Motion speed, range

1-100, default 100

zone: Interpolation accuracy,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

39 int IMC100_JumpL2(ROBOT_POS

pos, int vel=100, int zone=0, int

comId=0)

Moves to a

position with a

specified value

through linear

jump

pos: Position parameter

structure, see definition

vel: Motion speed, range

1-100, default 100

zone: Interpolation accuracy,

range -1 to 5, default 0

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

40 int IMC100_Jump_P_IO(int posNum,

int vel, int zone, MOV_IO *movIo, int

ioNum, int comId=0)

Moves to a

global position

with a specified

number through

jump while

controlling the

corresponding

I/O

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

302

groups of the I/O control

structure, range 1-3

41 int IMC100_JumpL_P_IO(int posNum,

int vel, int zone, MOV_IO *movIo, int

ioNum,int comId=0)

Moves to a

global position

with a specified

number through

linear jump

while controlling

the

corresponding

I/O

posNum: Target global

position number, range

0-1000

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

groups of the I/O control

structure, range 1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

42 int IMC100_Jump2_IO(ROBOT_POS

pos, int vel, int zone, MOV_IO *movIo,

int ioNum, int comId=0)

Moves to a

global position

with a specified

value through

jump while

controlling the

corresponding

I/O

pos: Position parameter

structure, see definition

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

groups of the I/O control

structure, range 1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

43 int

IMC100_JumpL2_IO(ROBOT_POS

pos, int vel, int zone, MOV_IO *movIo,

int ioNum, int comId=0)

Moves to a

global position

with a specified

value through

linear jump

while controlling

the

corresponding

I/O

pos: Position parameter

structure, see definition

vel: Motion speed, range

1-100

zone: Interpolation accuracy,

range -1 to 5

movIo: I/O control structure,

see definition

ioNum: The number of

groups of the I/O control

structure, range 1-3

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

44 int

IMC100_Get_PosHere(ROBOT_POS

*pos, int comId=0)

Queries position

parameters of the

current point (in

relation to the

current

coordinate

Pos: Position parameter

structure, representing the

result of the query

0:

Success;

＜0:

Failure

303

system)

45 int

IMC100_Get_PosHereJ(ROBOT_POS

*pos, int comId=0)

Queries position

parameters of the

current point in

the joint

coordinate

system

Pos: Position parameter

structure, representing the

result of the query (only

coordinate values are valid,

arm parameters and

coordinate parameters are

meaningless)

0:

Success;

＜0:

Failure

46 int

IMC100_Get_PosHereC(ROBOT_POS

*pos, int comId=0)

Queries position

parameters of the

current point in

the base

coordinate

system

Pos: Position parameter

structure, representing the

result of the query (only

coordinate values are valid,

arm parameters and

coordinate parameters are

meaningless)

0:

Success;

＜0:

Failure

47 int IMC100_Get_PosHerePulse(double

pos[6], int comId=0)

Queries pulse

value of the

current point in

the base

coordinate

system

Pos[]: The current pulse

value, representing the result

of the query

0:

Success;

＜0:

Failure

48 int

IMC100_Get_PosCnvt(ROBOT_POS

*posSrc, ROBOT_POS *posDst, int

comId=0)

Queries the

coordinate

system

conversion

results of

position

parameters

posSrc: Original coordinate

parameter structure, where

the coord range is 1-4, which

indicates that the robot

points are converted

in different coordinate

systems.

posDst: Target coordinate

parameter structure, which

represents the result of the

conversion, where coord,

toolNo, userNo represent the

coordinate system

parameters referenced for

conversion, which need to be

written in advance by the

user. When coord is 1 and 2,

toolNo and userNo are

meaningless.

0:

Success;

＜0:

Failure

304

49 int

IMC100_Get_VisionPosCnvt(ROBOT

_POS *posSrc, ROBOT_POS *basePos,

ROBOT_POS *posDst, int comId=0)

Queries the

results of

converting

camera pixels to

robot coordinates

posSrc: Original pixel (in

camera coordinate system)

coordinate structure, with

coord being 5 or 6. When

coord is 5, it represents the

conversion of points in the

fixed camera coordinate

system. When coord is 6, it

represents the conversion of

points in the dynamic

camera coordinate system.

toolNo represents the tool

number, and userNo

represents the vision

coordinate system number.

basePos: For fixed camera

coordinate system, it is

meaningless; for the mobile

camera coordinate system, it

represents the coordinates of

the vision reference point

(the camera’s shooting

point).

posDst: Target coordinate

parameter structure, which

represents the result of the

conversion, where coord,

toolNo, userNo represent the

coordinate system

parameters referenced for the

conversion, which need to be

written in advance by the

user. When coord is 1 and 2,

toolNo and userNo are

meaningless.

0:

Success;

＜0:

Failure

50 int IMC100_Get_OffsetJ(ROBOT_POS

*posSrc, double PR[6], ROBOT_POS

*posDst, int comId=0)

Queries the

offset point in

the joint

coordinate

system

posSrc: Original point, in the

joint coordinate system

PR: Offset variable

posDst: Resulting offset

point

0:

Success;

＜0:

Failure

51 int IMC100_Get_Offset(ROBOT_POS

*posSrc, double PR[6], ROBOT_POS

*posDst, int comId=0)

Queries the

offset point in

the

Cartesian/user

posSrc: Original point, in the

Cartesian/user coordinate

system

PR: Offset variable

0:

Success;

＜0:

Failure

305

coordinate

system

posDst: Offset post point

result

52 int

IMC100_Get_OffsetT(ROBOT_POS

*posSrc, double PR[6], ROBOT_POS

*posDst, int comId=0)

Queries the

offset point in

the tool

coordinate

system

posSrc: Original point, in the

tool coordinate system

PR: Offset variable

posDst: Resulting offset

point

0:

Success;

＜0:

Failure

53 int IMC100_Get_SysErrSts(int *sts, int

comId=0)

Queries the

current error

status of the

system

sts: System error status,

representing the result of the

query, bit0 - System has an

alarm, bit1 - System has a

warning

0:

Success;

＜0:

Failure

54 int IMC100_Get_SysErr(int *error, int

comId=0)

Queries the error

code of the

system

error: System error code,

representing the result of the

query

0:

Success;

＜0:

Failure

55 int IMC100_Get_TaskPrgPath(int

taskId, char prgPath[128], int comId)

Queries the path

to the program

executed in the

current task

channel

taskId: Task channel, 0 is the

main task

prgPath: Current program

path, representing the result

of the query

0:

Success;

＜0:

Failure

56 int IMC100_Get_TaskRunSts(int

taskId, int *sts, int comId)

Queries the

running status of

the task channel

taskId: Task channel, 0 is the

main task

sts: Running status,

representing the result of the

query, 0-Stop,

1-Start/Resume, 10-Ready,

100-Task not activated,

-1-Task active but no

program configured

0:

Success;

＜0:

Failure

57 int IMC100_Get_TaskProgramLine(int

taskId, int *line, int comId=0)

Queries the

number of line

currently

processed by the

program

executed in the

task channel

line: The number of line

currently processed by the

current task, representing the

result of the query

0:

Success;

＜0:

Failure

58 int IMC100_Get_CurMotionLine(int

*line, int comId=0)

Queries the

number of line of

the motion

instruction that is

currently being

executed

line: The number of line of

the motion instruction that is

currently being executed,

representing the result of the

query

0:

Success;

＜0:

Failure

306

59 int IMC100_Get_InitSts(int *sts, int

comId=0)

Queries the

system

initialization

status

sts: The initialization status

of the system, representing

the result of the query, range

-1 to 11

0:

Success;

＜0:

Failure

60 int IMC100_Get_AccRamp(double

*startVal, double *endVal, int comId

=0);

Queries the jerk

of the motion

segment in the

data streaming

mode

startVal: Speed percentage of

the start segment, range

10.0-100.0

endVal: Speed percentage of

the end segment, range

10.0-100.0

0:

Success;

＜0:

Failure

61 int IMC100_Get_RapidMove(int

movType, int *enableFlag, int comId =0)

Queries the

optimal

trajectory

planning switch

for the current

motion type

movType: Motion type, 0-CP

motion, 1-PTP motion

enableFlag: 0-Optimal

trajectory planning OFF for

the current motion type,

1-Optimal trajectory

planning ON for the current

motion type

0:

Success;

＜0:

Failure

62 int IMC100_Get_FlyMode(int cpMode,

int *flyMode, int comId);

Queries the

transition mode

of motion

instruction

cpMode: Motion type, 0-CP

motion

flyMode: Transition mode,

0-Free transition, 1-Fixed

path transition

0:

Success;

＜0:

Failure

63 int IMC100_Get_FlyPress(int

*flyPressPos, int *flyPressOrient, int

comId);

Queries the

transition stress

for a fixed path

flyPressPos: Position

transition stress, range

50-200

flyPressOrient: Orientation

transition stress, range

50-200

0:

Success;

＜0:

Failure

64 int IMC100_Get_Coord(int *type, int

comId=0)

Queries the

current

coordinate

system type

type: Current coordinate

system type, representing the

results of the query, range 1

to 4, 1-Joint coordinate

system, 2-Base coordinate

system, 3-Tool coordinate

system, 4-User coordinate

system

0:

Success;

＜0:

Failure

65 int IMC100_Get_Vel(int *val, int

comId=0)

Queries the

current speed

level value

val: The current speed level

value, representing the result

of the query, range 1-100

0:

Success;

＜0:

Failure

66 int IMC100_Get_Mode(int *mode, int

comId=0)

Queries the

current operation

mode of the

mode: System operating

mode, representing the result

of the query, 1-Teach,

0:

Success;

＜0:

307

system 2-Play, 3-Run in single step,

5-Run continuously

Failure

67 int IMC100_Get_DsMode(int *val, int

comId=0)

Queries if data

streaming mode

is on

val: Data streaming mode,

representing the result of the

query, 0 - off, 1-ON/Resume,

2-Pause

0:

Success;

＜0:

Failure

68 int IMC100_Get_InchMode(int *val,

int comId=0)

Queries the

teaching method

val: Teach method,

representing the result of the

query, 0-Continuous

teaching, 1-Jog teaching

0:

Success;

＜0:

Failure

69 int IMC100_Get_SlewMode(int *val,

int comId=0)

Queries the

rotation

optimization

mode for J4 axis

of SCARA

robots or J6 axis

of standard

6-axis robot

val: Rotation optimization

mode for J4 axis of SCARA

robots or J6 axis of standard

6-axis robot, for J4 axis of

SCARA robots or J6 axis of

standard 6-axis robot.

0 - Optimization not applied,

depending on the arm

parameter of the position

variable.

1 - Optimization mode 1

applied, to ensure that J4/J6

is within the range of -180°

to 180° during movement.

2 - Ensure that J4/J6 moves

in the closest possible

manner, and the robot will

calculate whether movement

to the target point requires

the J4/J6 to rotated by 180°.

If the angle difference is ≤

180°, the robot will fully

move to the target point. If it

is >180°, J4/J6 will move in

the opposite direction and

ultimately moves to a

position that is 360° away

from the position of J4/J6 at

the target point. During the

movement, if the reverse

movement of J4/J6 exceeds

the limit range of the robot,

it will stop moving and issue

an alarm.

0:

Success;

＜0:

Failure

308

3 - Ensure that J4/J6 moves

in the closest possible

manner. The difference from

mode 2 is that if the reverse

movement of J4/J6 exceeds

the limit range, there will be

no alarm, but instead no

reverse movement will be

carried out and the original

normal movement will be

fully adopted.

70 int IMC100_Get_EStopSts(int *sts, int

comId=0)

Queries the

current status of

the emergency

stop switch

sts: Emergency stop switch

status, representing the result

of the query, 0-Switch

released, 1-Switch pressed

0:

Success;

＜0:

Failure

71 int IMC100_Get_MotorSts(int *sts, int

comId=0)

Queries the

current motor

enable status

sts: Motor enable status,

representing the result of the

query, 0-Disabled, 1-Enabled

0:

Success;

＜0:

Failure

72 int IMC100_Get_MotionSts(int *sts, int

comId=0)

Queries the

current system

motion status

sts: System motion status,

representing the result of the

query, 0-Stop/Motion

complete, 1-In motion,

2-Motion interrupted

0:

Success;

＜0:

Failure

73 int IMC100_Get_SysMode(int *mode,

int comId=0)

Queries the

current system

mode

mode: System mode,

representing the result of the

query, 0-Normal

mode, >0-Internal test mode

0:

Success;

＜0:

Failure

74 int

IMC100_Get_PrgRunTime(unsigned

int *second, int comId=0)

Queries the

running time of

the teaching

program

second: Time count value (in

seconds), representing the

result of the query

0:

Success;

＜0:

Failure

75 int

IMC100_Get_CurCmdNum(unsigned

int *num, int comId=0)

Queries the

number of the

motion

instructions

(Home, MovJ,

MovL) that were

sent successfully

num: Instruction number,

representing the result of the

query

0:

Success;

＜0:

Failure

Only valid

in data

streaming

mode.

76 int IMC100_Get_CurCmdSts(int *sts,

int comId=0)

Queries the

actual

completion status

of the motion

instructions that

sts: Completion status,

representing the result of the

query, 0-Motion incomplete,

1-Motion complete

0:

Success;

＜0:

Failure

Only valid

in data

streaming

mode.

309

were sent

successfully

77 int IMC100_Get_CmdSts(int num, int

*sts, int comId=0)

Queries the

actual

completion status

of the motion

instruction with a

specified number

num: Instruction number

sts: Completion status,

representing the result of the

query, 0-Motion incomplete,

1-Motion complete

0:

Success;

＜0:

Failure

Only valid

in data

streaming

mode.

78 int IMC100_Get_DINum(int *num, int

comId=0)

Queries the total

number of

system DIs

num: Total number of DIs,

representing the result of the

query

0:

Success;

＜0:

Failure

79 int IMC100_Get_DONum(int *num, int

comId=0)

Queries the total

number of

system DOs

num: Total number of DOs,

representing the result of the

query

0:

Success;

＜0:

Failure

80 int IMC100_Get_ADNum(int *num, int

comId=0)

Queries the total

number of

system ADs

Num: Total number of ADs,

representing the result of the

query

0:

Success;

＜0:

Failure

81 int IMC100_Get_DANum(int *num, int

comId=0)

Queries the total

number of

system DAs

Num: Total number of DAs,

representing the result of the

query

0:

Success;

＜0:

Failure

82 int IMC100_Get_DI(int num, int *sts,

int comId=0)

Queries the DI

status by bit

num: DI number (not

exceeding the total number

of DIs)

sts: DI status, representing

the result of the query, 0-Off,

1-On

0:

Success;

＜0:

Failure

83 int IMC100_Get_DIGroup(int num, int

*sts, int comId=0)

Queries the DI

status by group

num: DI group number

sts: The DI status of each

group, range 0-255, where

bit0-bit7 corresponds to the

DI status with the lowest to

highest group number

0:

Success;

＜0:

Failure

84 int IMC100_Get_AD(int num, float

*val, int comId=0)

Queries the input

values for AD by

number

num: AD number (not

exceeding total number of

AD)

val: AD value, representing

the result of the query,

current type in mA and

voltage type in V

0:

Success;

＜0:

Failure

310

85 int IMC100_Get_DOCfg(int num, int

*val, int comId=0)

Queries the DO

configuration

permission

num: DO number (not

exceeding total number of

DO)

val: Configuration

permission, representing the

result of the query,

1-Permission granted to RC,

0-Permission granted to PLC

0:

Success;

＜0:

Failure

86 int IMC100_Get_DOGroupCfg(int

num, int *val, int comId=0)

Queries the

configuration

permission for

each group of

DOs

num: DO group number

val: Configuration

permission, representing the

result of the query, bit0-bit7

represents the configuration

permission for each DO in

the group, 1-Permission

granted to RC, 0-Permission

granted to PLC

0:

Success;

＜0:

Failure

87 int IMC100_Get_DO(int num, int *sts,

int comId=0)

Queries the DO

status by group

num: DO number (not

exceeding the total number

of DO's)

sts: DO status, representing

the result of the query, 0-Off,

1-On

0:

Success;

＜0:

Failure

88 int IMC100_Get_DOGroup(int num,

int *sts, int comId=0)

Queries the DO

status by group

num: DO group number

sts: The DO status of each

group, range 0-255, where

bit0-bit7 corresponds to the

DO status with the lowest to

highest group number

0:

Success;

＜0:

Failure

89 int IMC100_Get_DACfg(int num, int

*val, int comId=0)

Queries the DA

configuration

permission

num: DA number

val: Configuration

permission, representing the

result of the query,

1-Permission granted to RC,

0-Permission not granted to

RC (namely, the permission

is granted to PLC, or no

connection is available)

0:

Success;

＜0:

Failure

90 int IMC100_Get_DA(int num, float

*val, int comId=0)

Queries the

output value of

DA by number

num: DA number (not

exceeding total number of

DA)

val: DA value, representing

the result of the query,

current type in mA and

0:

Success;

＜0:

Failure

311

voltage type in V

91 int IMC100_Get_DevSts(int sts[6], int

comId=0)

Queries the

connection status

of the system

devices

sts[]: System device

connection status ,

representing the result of the

query sts[0]: NIC 1 status,

0-Not connected,

1-Connected, 2-Disabled;

sts[1]: NIC 2 status, as

NIC1; sts[2]: USB device

status, 0-Not connected,

1-Connected and mounted

successfully, 2-Mounting

failed; sts[3]: Memory card

status, 0-Not connected,

1-Connected and mounted

successfully, 2-Mounting

failed, 3-File system format

error; sts[4]: EtherCAT0

communication status,

0-Normal, 1-Slave

disconnected, 2-Network

cable not connected,

3-Connected to non-ECAT

devices, 4-Disabled; sts[5]:

IRLink0 communication

status, as EtherCAT0

0:

Success;

＜0:

Failure

92 int IMC100_Get_FwVersion(char

ver[32], int comId=0)

Queries the

system controller

software version

ver[]: Current system

software version,

representing the result of a

query, such as S03.20R

0:

Success;

＜0:

Failure

93 int IMC100_Get_SysTime(char

time[16], int comId=0)

Queries the

current system

time

time[]: A time string

(YYYY-mm-dd-hours-secon

ds), representing the result of

the query

0:

Success;

＜0:

Failure

94 int IMC100_Get_RobotType(char

type[128], int comId=0)

Queries the

current system

model

type[]: A model string,

representing the result of the

query, for example

Scara_A_Ino1

0:

Success;

＜0:

Failure

95 int IMC100_Get_ArmType(double

pos[6], int armType[4], int comId=0)

Queries the arm

parameters based

on the joint

coordinate values

pos[]: Joint coordinate value

armType[]: Arm parameter,

representing the result of the

query

0:

Success;

＜0:

Failure

312

96 int IMC100_Get_TransArmType(int

armType[4], int transArmType[4], int

comId=0)

Converts arm

parameters for a

point in system

earlier than V18

to arm

parameters in

system above

V18 (for 6-axis

robots only)

armType[]: Arm parameters,

in system earlier than V18

transArmType[]: Converted

arm parameters, representing

the result of the query

0:

Success;

＜0:

Failure

97 int IMC100_Get_ServoSts(int sts[8], int

comId=0)

Queries the error

status of all

servos in the

system (both

robot axes and

external axes)

sts[8]: Fault status of the

servo, representing the result

of the query Currently up to

8 servo axes are supported,

sts[0] corresponds to servo

#0, and so on, 0-No fault,

bit0-Servo alarm, Bit1-Servo

warning

0:

Success;

＜0:

Failure

98 int IMC100_Get_ServoErr(int num, int

*error, int comId=0)

Queries the error

code for a single

servo (robot

axis)

num: Servo axis number,

starting from 0

error: Servo error code,

representing the result of the

query

0:

Success;

＜0:

Failure

99 int IMC100_Get_StrPara(float para[6],

int comId=0)

Queries the robot

structure

parameters

para[]: Structure parameters,

representing the result of the

query (for SCARA robots,

para[0]-para[3] are valid, for

6-axis robots,

Para[0]-para[5] are valid,

same as below)

0:

Success;

＜0:

Failure

10

0

int IMC100_Set_StrPara(float para[6],

int comId=0)

Sets the robot

structure

parameters

para[]: Structure parameters 0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

10

1

int IMC100_Get_StrParaComp(float

para[6], int comId=0)

Queries the robot

structure

compensation

parameters

para[]: Structure

compensation parameters,

representing the result of the

query

0:

Success;

＜0:

Failure

10

2

int IMC100_Set_StrParaComp(float

para[6], int comId=0)

Sets the robot

structure

compensation

parameters

para[]: Structure

compensation parameters

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

313

10

3

int IMC100_Get_RdctRatio(float

para[6], int comId=0)

Queries the

reduction ratio of

joints

para[]: Reduction ratio of

joints, representing the result

of the query

0:

Success;

＜0:

Failure

10

4

int IMC100_Set_RdctRatio(float

para[6], int comId=0)

Sets the

reduction ratio of

joints

para[]: Reduction ratio of

joints

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

10

5

int IMC100_Get_CpParaM(float

para[6], int comId=0)

Queries the main

coupling

parameters of the

joints

para[]: Main coupling

parameter of each joint,

representing the result of the

query

0:

Success;

＜0:

Failure

10

6

int IMC100_Set_CpParaM(float

para[6], int comId=0)

Sets the main

coupling

parameters of the

joints

para[]: Main coupling

parameter of each joint

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

10

7

int IMC100_Get_CpParaS(float

para[6], int comId=0)

Queries the

secondary

coupling

parameters of the

joints

para[]: Secondary coupling

parameter of each joint,

representing the result of the

query

0:

Success;

＜0:

Failure

10

8

int IMC100_Set_CpParaS(float

para[6], int comId=0)

Sets the

secondary

coupling

parameters of the

joints

para[]: Secondary coupling

parameter of each joint

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

10

9

int IMC100_Get_HomePos(int num,

double pos[6], int comId=0)

Queries the work

origin

num: Work origin number,

range 0-4

pos[]: Joint coordinate value

corresponding to the work

origin, representing the

result of the query

0:

Success;

＜0:

Failure

11

0

int IMC100_Set_HomePos(int num,

double pos[6], int comId=0)

Sets the work

origin

num: Work origin number,

range 0-4

pos[]: Joint coordinate value

corresponding to the work

origin

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

11

1

int IMC100_Get_ZeroPos(int pluse[6],

int comId=0)

Queries the

absolute zero

point

plus[]: The pulse value for

the absolute zero point,

representing the result of the

query

0:

Success;

＜0:

Failure

314

11

2

int IMC100_Set_ZeroPos(int pluse[6],

int comId=0)

Sets the absolute

zero point

plus[]: The pulse value for

the absolute zero point

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

11

3

int IMC100_Get_InchStep(int *val, int

comId=0)

Queries the step

size of jog

motion

val: Step size of jog motion,

representing the result of the

query

0:

Success;

＜0:

Failure

11

4

int IMC100_Get_StepMotionJ(float

*para, int comId=0)

Queries the joint

step size of jog

motion in the

teaching mode

para: Joint step size,

representing the result of the

query

0:

Success;

＜0:

Failure

11

5

int IMC100_Set_StepMotionJ(float

para, int comId=0)

Sets the joint

step size of jog

motion in the

teaching mode

para: Joint step size 0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

11

6

int IMC100_Get_StepMotionL(float

*para, int comId=0)

Queries the

linear step size of

jog motion in the

teaching mode

para: Linear step size,

representing the result of the

query

0:

Success;

＜0:

Failure

11

7

int IMC100_Set_StepMotionL(float

para, int comId=0)

Sets the linear

step size of jog

motion in the

teaching mode

para: Linear step size 0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

11

8

int IMC100_Get_TeachVelLimJ(float

para[6], int comId=0)

Queries the

upper limit of

joint speed

during teaching

para[]: Maximum allowable

joint speed, representing the

result of the query

0:

Success;

＜0:

Failure

11

9

int IMC100_Set_TeachVelLimJ(float

para[6], int comId=0)

Sets the upper

limit of joint

speed during

teaching

para[]: Maximum allowable

joint speed

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

12

0

int IMC100_Get_TeachVelLimL(float

para[2], int comId=0)

Queries the

upper limit of

position/orientati

on speed during

teaching

para[2]: Maximum allowable

position/orientation speed,

representing the result of the

query

0:

Success;

＜0:

Failure

12

1

int IMC100_Set_TeachVelLimL(float

para[2], int comId=0)

Sets the upper

limit of

position/orientati

para[2]: Maximum allowable

position/orientation speed

0:

Success;

＜0:

Can be

used in

Manager

315

on speed during

teaching

Failure mode and

above

12

2

int IMC100_Get_TeachAccLimJ(float

para[6], int comId=0)

Queries the

upper limit of

joint acceleration

during teaching

para[]: Maximum allowable

joint acceleration,

representing the result of the

query

0:

Success;

＜0:

Failure

12

3

int IMC100_Set_TeachAccLimJ(float

para[6], int comId=0)

Sets the upper

limit of joint

acceleration

during teaching

para[]: Maximum allowable

joint acceleration

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

12

4

int IMC100_Get_TeachAccLimL(float

para[2], int comId=0)

Queries the

upper limit of

position/orientati

on acceleration

during teaching

para[2]: Maximum allowable

position/orientation

acceleration, representing the

result of the query

0:

Success;

＜0:

Failure

12

5

int IMC100_Set_TeachAccLimL(float

para[2], int comId=0)

Sets the upper

limit of

position/orientati

on acceleration

during teaching

para[2]: Maximum allowable

position/orientation

acceleration

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

12

6

int IMC100_Get_RunVelLimJ(float

para[6], int comId=0)

Queries the

upper limit of

joint speed

during operation

para[]: Maximum allowable

joint speed, representing the

result of the query

0:

Success;

＜0:

Failure

12

7

int IMC100_Set_RunVelLimJ(float

para[6], int comId=0)

Sets the upper

limit of joint

speed during

operation

para[]: Maximum allowable

joint speed

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

12

8

int IMC100_Get_RunVelLimL(float

para[2], int comId=0)

Queries the

upper limit of

position/orientati

on speed during

operation

para[2]: Maximum allowable

position/orientation speed,

representing the result of the

query

0:

Success;

＜0:

Failure

12

9

int IMC100_Set_RunVelLimL(float

para[2], int comId=0)

Sets the upper

limit of

position/orientati

on speed during

operation

para[2]: Maximum allowable

position/orientation speed

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

13

0

int IMC100_Get_RunAccLimJ(float

para[6], int comId=0)

Queries the

upper limit of

joint acceleration

during operation

para[]: Maximum allowable

joint acceleration,

representing the result of the

query

0:

Success;

＜0:

Failure

316

13

1

int IMC100_Set_RunAccLimJ(float

para[6], int comId=0)

Sets the upper

limit of joint

acceleration

during operation

para[]: Maximum allowable

joint acceleration

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

13

2

int IMC100_Get_RunAccLimL(float

para[2], int comId=0)

Queries the

upper limit of

position/pose

acceleration

during operation

para[2]: Maximum allowable

position/pose acceleration,

representing the result of the

query

0:

Success;

＜0:

Failure

13

3

int IMC100_Set_RunAccLimL(float

para[2], int comId=0)

Sets the upper

limit of

position/pose

acceleration

during operation

Para[2]: Maximum

allowable position/pose

acceleration

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

13

4

int IMC100_Get_StopDecLimJ(float

para[6], int comId=0)

Queries the

upper limit of

joint deceleration

during operation

para[]: Maximum allowable

joint deceleration,

representing the result of the

query

0:

Success;

＜0:

Failure

13

5

int IMC100_Set_StopDecLimJ(float

para[6], int comId=0)

Sets the upper

limit of joint

acceleration

during operation

Para[]: Maximum allowable

joint deceleration

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

13

6

int IMC100_Get_StopDecLimL(float

para[2], int comId=0)

Queries the

upper limit of

position/pose

acceleration

during operation

para[2]: Maximum allowable

position/pose acceleration,

representing the result of the

query

0:

Success;

＜0:

Failure

13

7

int IMC100_Set_StopDecLimL(float

para[2], int comId=0)

Sets the upper

limit of

position/pose

acceleration

during operation

Para[]: Maximum

permissible position/pose

deceleration

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

13

8

int IMC100_Get_ZonePara(float

para[2], int comId=0)

Queries the

transition

accuracy

parameters

para[]: Linear and joint

transition accuracy,

representing the result of the

query

0:

Success;

＜0:

Failure

13

9

int IMC100_Set_ZonePara(float

para[2], int comId=0)

Sets the

transition

accuracy

parameters,

including linear

transition

para[]: Linear and joint

transition accuracy

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

317

accuracy and

joint transition

accuracy

14

0

int IMC100_Get_AxisNLim(int axis,

float *para, int comId=0)

Queries the

negative axis

limit of the robot

axis

axis: Axis number,

depending on the number of

axes, range 1-6,

corresponding to J1-J6 axis

para: Negative axis limit,

representing the result of the

query

0:

Success;

＜0:

Failure

14

1

int IMC100_Set_AxisNLim(int axis,

float para, int comId=0)

Sets the negative

axis limit of the

robot axis

axis: Axis number, range

1-6, corresponding to J1-J6

axis

para: Negative axis limit

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

14

2

int IMC100_Get_AxisPLim(int axis,

float *para, int comId=0)

Queries the

positive axis

limit of the robot

axis

axis: Axis number, range

1-6, corresponding to J1-J6

axis

para: Positive axis limit,

representing the result of the

query

0:

Success;

＜0:

Failure

14

3

int IMC100_Set_AxisPLim(int axis,

float para, int comId=0)

Sets the positive

axis limit of the

robot axis

axis: Axis number, range

1-6, corresponding to J1-J6

axis

para: Positive axis limit

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

14

4

int IMC100_Get_ToolC(int num,

double pos[6], int comId=0)

Queries the tool

coordinate

system

parameters

num: Tool number, range

1-15

pos[]: Tool coordinate

system parameters,

representing the result of the

query

0:

Success;

＜0:

Failure

14

5

int IMC100_Set_ToolC(int num, double

pos[6], int comId=0)

Sets the tool

coordinate

system

parameters

num: Tool number, range

1-15

pos[]: Tool coordinate

system parameters

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

14

6

int IMC100_Get_UserC(int num,

double pos[6], int comId=0)

Queries the user

coordinate

system

parameters

num: User number, range

1-15

pos[]: User coordinate

system parameters,

representing the result of the

query

0:

Success;

＜0:

Failure

318

14

7

int IMC100_Set_UserC(int num, double

pos[6], int comId=0)

Sets the user

coordinate

system

parameters

num: User number, range

1-15

pos[]: User coordinate

system parameters

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

14

8

int IMC100_Get_ToolCNum(int *num,

int comId=0)

Queries the

current tool

coordinate

system number

num: Currently selected tool

number, representing the

result of the query

0:

Success;

＜0:

Failure

14

9

int IMC100_Set_ToolCNum(int num,

int comId=0)

Sets the current

tool coordinate

system number

num: Tool number 0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

15

0

int IMC100_Get_UserCNum(int *num,

int comId=0)

Queries the

current user

coordinate

system number

num: Currently selected user

number, representing the

result of the query

0:

Success;

＜0:

Failure

15

1

int IMC100_Set_UserCNum(int num,

int comId=0)

Sets the current

user coordinate

system number

num: User number 0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

15

2

int IMC100_Set_Coord(int type, int

comId=0)

Sets the current

coordinate

system type

type: Current coordinate

system type, range 1 to 4,

1-Joint coordinate system,

2-Base coordinate system,

3-Tool coordinate system,

4-User coordinate system

0:

Success;

＜0:

Failure

15

3

int IMC100_Get_Interf(int num, double

pos[6], int comId=0)

Queries the

coordinate

parameters of the

boundary points

in the

interference area

num: Interference area

number, range 0 to 7

pos[]: Coordinates of

boundary points in the

interference area,

representing the result of the

query, pos[0] to pos[2]

correspond to the XYZ

coordinates of point 1,

Pos[3] to pos[5] correspond

to the XYZ coordinates of

point 2

0:

Success;

＜0:

Failure

15

4

int IMC100_Set_Interf(int num, double

pos[6], int comId=0)

Sets the

coordinate

parameters of the

num: Interference area

number

pos[]: Coordinates of the

0:

Success;

＜0:

Can be

used in

Manager

319

boundary points

in the

interference area

boundary points in the

interference area

Failure mode and

above

15

5

int IMC100_Get_CurInterf(int *num,

int comId=0)

Queries the

number of active

area that is

currently active

num: Interference area

number, representing the

result of the query, range 0 to

255, where bit0 to bit7

correspond to the

interference area 0 to the

interference area 7,

0-Inactive, 1-Active

0:

Success;

＜0:

Failure

15

6

int IMC100_Set_CurInterf(int num, int

comId=0)

Sets the number

of the

interference area

that needs to be

activated

num: Interference area

number, as above

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

15

7

int IMC100_Get_JumpPara(float *lh,

float *mh, float *rh, int comId=0)

Queries the

height

parameters of the

jump motion

(Jump, JumpL)

lh: Height raised relative to

the starting position, range 0

to 2000, representing the

query of the result

mh: Height of the highest

point of motion relative to

zero point of the base

coordinate system, range

-2000 to 2000, representing

the query of the result

rh: Height dropped when

reaching the destination

position, representing the

query of the result

0:

Success;

＜0:

Failure

15

8

int IMC100_Set_JumpPara(float lh,

float mh, float rh, int comId=0)

Sets the height

parameters of the

jump motion

(Jump, JumpL)

lh: Height raised relative to

the starting position, range 0

to 2000,

mh: Height of the highest

point of motion relative to

zero point of the base

coordinate system, range

-2000 to 2000

rh: Height dropped when

reaching the destination

position

0:

Success;

＜0:

Failure

Only

effective

in data

streaming

mode.

15

9

int IMC100_Get_PalletPara(int

*rowNum, int *colNum, int

*layerNum, double *layerHeight, int

Queries the

pallet parameters

rowNum: Row number,

range 0 to 1000

colNum: Columns number,

0:

Success;

＜0:

320

comId=0) range 0 to 1000

layerNum: Layer number,

range 0 to 1000

layerHeight: Layer height,

unit: mm

Failure

16

0

int IMC100_Set_PalletPara(int

*rowNum, int *colNum, int

*layerNum, double *layerHeight, int

comId=0)

Sets the pallet

parameters

rowNum: Row number,

range 0 to 1000

colNum: Columns number,

range 0 to 1000

layerNum: Layer number,

range 0 to 1000

layerHeight: Layer height,

unit: mm

0:

Success;

＜0:

Failure

16

1

int IMC100_Clear_PalletPara(int

comId=0)

Clears the tray

parameters

Clears the tray parameters 0:

Success;

＜0:

Failure

16

2

int

IMC100_Get_PalletPoint(ROBOT_PO

S pos1, ROBOT_POS pos2,

ROBOT_POS pos3, int rowIndex, int

colIndex, int layIndex, ROBOT_POS

*posDst, int comId=0)

Queries

corresponding

pallet points (3

points defining

the boundary of

pallet)

pos1-3: Three points that

define the pallet.

rowIndex: The row number

of point to be queried.

colIndex: The column

number of point to be

queried.

layIndex: The layer number

of point to be queried.

PosDst: The result of point

query.

0:

Success;

＜0:

Failure

The

calculatio

n results

are

determine

d by the

number of

the tool

coordinate

system of

the first

point.

16

3

int

IMC100_Get_Pallet4Point(ROBOT_P

OS pos1, ROBOT_POS pos2,

ROBOT_POS pos3, ROBOT_POS pos4,

int rowIndex, int colIndex, int layIndex,

ROBOT_POS *posDst, int comId=0)

Queries

corresponding

pallet points (4

points defining

the boundary of

pallet)

pos1-3: Four points that

define the pallet.

rowIndex: The row number

of point to be queried.

colIndex: The column

number of point to be

queried.

layIndex: The layer number

of point to be queried.

PosDst: The result of point

query.

0:

Success;

＜0:

Failure

The

calculatio

n results

are

determine

d by the

number of

the tool

coordinate

system of

the first

point.

16

4

int IMC100_SavePara(int comId=0) Saves the system

parameters,

retentive upon

 0:

Success;

＜0:

Can be

used in

Manager

321

power failure Failure mode and

above

16

5

int IMC100_RecoverPara(int comId=0) Restores the

system

parameters to the

last saved ones

 0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

16

6

int IMC100_Get_P(int pNum,

ROBOT_POS *pos, int comId=0)

Queries the

position

parameters

corresponding to

the global

position variable

pNum: Global position

variable number, range

0-1000

pos: Position parameter

structure, representing the

result of the query

0:

Success;

＜0:

Failure

16

7

int IMC100_Set_P(int pNum,

ROBOT_POS *pos, int comId=0)

Sets the position

parameters

corresponding to

the global

position variable

pNum: Global position

variable number, range

0-1000

pos: Position parameter

structure

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

16

8

int IMC100_Set_Phere(int pNum, int

comId=0)

Sets the global

position

parameters with

the parameters of

the current point

pNum: Global position

variable number

0:

Success;

＜0:

Failure

Can be

used in

editor

mode and

above

16

9

int IMC100_Get_PR(int prNum,

ROBOT_POS *pos, int comId=0)

Queries the

parameters for

the global

translation

variable

prNum: Global translation

variable number, range 0 to

255

pos: Position parameter

structure, representing the

result of the query, where the

arm parameters are invalid

0:

Success;

＜0:

Failure

17

0

int IMC100_Set_PR(int prNum,

ROBOT_POS pos, int comId=0)

Sets the

parameters for

the global

translation

variable

prNum: Global translation

variable number, range 0 to

255

pos: Position parameter

structure, where the arm

parameters are invalid

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

17

1

int IMC100_WriteFile_PR(int

comId=0)

Saves all PR

variables,

retentive upon

power failure

 0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

17

2

int IMC100_Get_B(int num, int *val, int

comId=0)

Queries the value

of the global B

variable

num: B variable number

val: B variable value,

representing the result of the

0:

Success;

＜0:

322

query Failure

17

3

int IMC100_Set_B(int num, int val, int

comId=0)

Sets the value of

the global B

variable

num: B variable number

val: B variable value, range

0-255

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

17

4

int IMC100_Get_R(int num, int *val,

int comId=0)

Queries the value

of the global R

variable

num: R variable number

val: R variable value,

representing the result of the

query

0:

Success;

＜0:

Failure

17

5

int IMC100_Set_R(int num, int val, int

comId=0)

Sets the value of

the global R

variable

num: B variable number

val: B variable value, range

-65536 to 65535

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

17

6

int IMC100_Get_D(int num, double

*val, int comId=0)

Queries the value

of the global D

variable

num: D variable number

val: D variable value,

representing the result of the

query

0:

Success;

＜0:

Failure

17

7

int IMC100_Set_D(int num, double val,

int comId=0)

Sets the value of

the global D

variable

num: D variable number

val: D variable value, range

-9999999.999 to

999999999.999

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

17

8

int IMC100_Get_ModbusCoil(int

address, int sum, int *val, int comId=0)

Queries the coil

value of the

Modbus variable

area

address: Modbus area coil

address, range 0-8191

sum: Total number of coils

read, range 1-8

val: Coil value, representing

the result of the query

0:

Success;

＜0:

Failure

17

9

int IMC100_Set_ModbusCoil(int

address, int sum, int val, int comId=0)

Sets the coil

value of the

Modbus variable

area

address: Modbus area coil

address, range 2048-4095,

6144-8191

sum: Total number of coils

read, range 1-8

val: Coil value

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

18

0

int

IMC100_Get_ModbusRegUshort(int

address, int sum, unsigned short val[], int

comId=0)

Queries the

register value of

the Modbus

variable area,

with the data

type being

unsigned short

address: Modbus area

register address, range

0-65535

sum: Total number of

registers read, range 1-8

val: Represents the result of

the query

0:

Success;

＜0:

Failure

323

18

1

int

IMC100_Set_ModbusRegUshort(int

address, int sum, unsigned short val[], int

comId=0)

Sets the register

value of the

Modbus variable

area, with the

data type being

unsigned short

address: Modbus area

register address, range

16384-32767, 49152-65535

sum: Total number of

registers read, range 1-8

val: Represents the result of

the query

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

18

2

int IMC100_Get_ModbusRegFloat(int

address, int sum, float val[], int

comId=0)

Queries the

register value of

the Modbus

variable area,

with the data

type being float

address: Modbus area

register address, range

0-65535

sum: Total number of

registers read, range 1-8

val: Represents the result of

the query (one float data

occupies 2 registers)

0:

Success;

＜0:

Failure

18

3

int IMC100_Set_ModbusRegFloat(int

address, int sum, float val[], int

comId=0)

Sets the register

value of the

Modbus variable

area, with the

data type being

float

address: Modbus area

register address, range

16384-32767, 49152-65535

sum: Total number of

registers read, range 1-8

val: Represents the result of

the query

0:

Success;

＜0:

Failure

Can be

used in

Editor

mode and

above

18

4

int IMC100_Get_PlcVarByte(int num,

unsigned char *val, int comId=0)

Queries the value

of a Byte-type

PLC variable

num: Byte variable number,

range 0-255

val: Variable value,

representing the result of the

query

0:

Success;

＜0:

Failure

18

5

int IMC100_Get_PlcVarInt(int num,

short *val, int comId=0)

Sets the value of

an Int-type PLC

variable

num: Int variable number,

range 0-255

val: Variable value,

representing the result of the

query

0:

Success;

＜0:

Failure

18

6

int IMC100_Get_PlcVarDInt(int num,

int *val, int comId=0)

Sets the value of

an DInt-type

PLC variable

num: DInt variable number,

range 0-255

val: Variable value,

representing the result of the

query

0:

Success;

＜0:

Failure

18

7

int IMC100_Get_PlcVarLReal(int

num, double *val, int comId=0)

Queries the value

of a LReal-type

PLC variable

num: LReal variable number,

range 0-255

val: Variable value,

representing the result of the

query

0:

Success;

＜0:

Failure

18

8

int IMC100_Get_UserAlarm(int num,

char alarm[40], int comId=0)

Queries the

contents of a

num: Custom alarm number,

range 0-15

0:

Success;

324

custom alarm alarm: Description of alarm,

representing the result of the

query, with a length of 40

bytes or less

＜0:

Failure

18

9

int IMC100_Set_UserAlarm(int num,

char alarm[40], int comId=0)

Sets the contents

of a custom

alarm

num: Custom alarm number,

range 0-15

alarm: Description of alarm,

with a length of 40 bytes or

less

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

19

0

int IMC100_Get_Print(char val[120],

int comId=0)

Queries the

controller print

information,

including printed

contents of the

print instructions

and the system

error message

val: Printed contents,

representing the result of the

query, with a length of 120

bytes or less

0:

Success;

＜0:

Failure

19

1

int IMC100_Get_InCfg(int func, int

*diNum, int comId=0)

Queries the DI

number

corresponding to

the query input

function

func: Enter function number,

0-Start, 1-Stop, 2-Program

reset, 3-Emergency stop,

4-Clear alarm, 5-Increase

speed, 6-Decrease speed

diNum: DI number,

representing the result of the

query, -1 means that the

corresponding DI is not set,

and the other range is 0-15

0:

Success;

＜0:

Failure

19

2

int IMC100_Set_InCfg(int func, int

diNum, int comId=0)

Sets the DI

number

corresponding to

the query input

function

func: Input function number,

0-Start, 1-Stop, 2-Program

reset, 3-Emergency stop,

4-Clear alarm, 5-Increase

speed, 6-Decrease speed

diNum: DI number, range

0-15, -1 means that the

corresponding DI is not set

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

19

3

int IMC100_Get_OutCfg(int func, int

*doNum, int comId=0)

Queries the DO

number

corresponding to

the query input

function

func: Output function

number, 0-Alarm, 1-Run,

2-Stop, 3-Start completed,

4-Enable, 5-Reset

successfully

diNum: DO number,

representing the result of the

query, -1 means that the

corresponding DO is not set,

0:

Success;

＜0:

Failure

325

and the other range is 0-15

19

4

int IMC100_Set_OutCfg(int func, int

doNum, int comId=0)

Sets the DO

number

corresponding to

the query input

function

func: Output function

number, 0-Alarm, 1-Run,

2-Stop, 3-Start completed,

4-Enable, 5-Reset

successfully

diNum: DO number, range

0-15, -1 means that the

corresponding DO is not set

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

19

5

int IMC100_CurCtrlDev(int *dev, int

comId=0)

Queries the

device to which

the current

control

permission

belongs

dev: Number of current

control device,

0-InoTeachPad,

1-InoRobShop, 2-Remote

Ethernet, 3-Remote I/O,

4-Remote Modbus

0:

Success;

＜0:

Failure

19

6

int IMC100_CurPermit(int *owner,

unsigned int *ipAddr, unsigned short

*ipPort, int comId=0)

Queries for

information

about the

Ethernet device

that currently has

control

permission

owner: Identity of Ethernet

device that has the control

permission, representing the

result of the query, 0-No

Ethernet device granted

permission, 1-Current device

granted permission, 2-Other

Ethernet device granted

permission.

IpAddr: Device IP address,

representing the result of the

query. When the first return

value is 0, this value is

meaningless.

ipPort: The device port

number, representing the

result of the query.

0:

Success;

＜0:

Failure

19

7

int IMC100_AcqPermit(int cmd=0, int

comId=0)

Current API

network client

device requests

to obtain control

permission

cmd: Request command, 0

for general request for

permission, 1 for preemption

of permission, default is 0

0:

Success;

＜0:

Failure

19

8

int IMC100_RemovePermit(int

comId=0)

Current API

network client

device requests

to release control

permission

 0:

Success;

＜0:

Failure

326

19

9

int IMC100_CurUserType(int *type,

int comId=0)

Queries the

current user

mode

type: User mode,

representing the result of the

query, 0-User, 1-Editor,

2-Manager, 3-Factory

0:

Success;

＜0:

Failure

20

0

int IMC100_UserLogin(int type, char

password[8], int comId=0)

The user mode to

which the current

API network

client device logs

type: User mode, 0-User,

1-Editor, 2-Manager,

3-Factory

0:

Success;

＜0:

Failure

20

1

int IMC100_UserLogout(int comId=0) The current API

network client

device exits the

current login

mode and returns

to the default

User mode

 0:

Success;

＜0:

Failure

20

2

int IMC100_Set_SysTime(char

time[16], int comId=0)

Sets the current

system clock

Time: A time string

(yyyy-mm-dd, hh:mm:ss),

with a length of 14

characters

0:

Success;

＜0:

Failure

Can be

used in

Manager

mode and

above

20

3

int IMC100_LatchEnable(int cmd, int

comId=0)

Enables or

disables the

position latch

function

cmd: Control command,

1-Enable, 0-Disable

0:

Success;

＜0:

Failure

20

4

int IMC100_Get_LatchSts(int *sts, int

comId=0)

Queries the

status of the

position latch

function

sts: Latch function status,

1-Enabled, 0-Disabled

0:

Success;

＜0:

Failure

20

5

int IMC100_Get_LatchSum(int *sum,

int comId=0)

Queries the total

number of

latched position

points

sum: Query result 0:

Success;

＜0:

Failure

20

6

int IMC100_Get_LatchPos(int index,

int *sts, double pos[6], int comId=0)

Reads the

latched positions

(read in

sequence, each

position can only

be read once)

index: Reserved

sts: Returned status,

indicating whether there is

latched data (0-No, 1-Yes)

pos: Returned latched value,

the joint coordinates

0:

Success;

＜0:

Failure

20

7

int IMC100_Clr_LatchPos(int

comId=0)

Clears the latch

positions

 0:

Success;

＜0:

Failure

327

Structure Description

typedef struct{

double pos[6];
Coordinate values of robot position, 64 bits

int armType[4];
Arm parameter

int coord;
Coordinate system type (1-Joint, 2-Cartesian)

int toolNo;
Tool coordinate number

Int userNo;
User coordinate number

}ROBOT_POS;

typedef struct{

int IONo;
I/O number (0–63)

int IOVa;
Output value of I/O (0-OFF, 1-ON)

int Kind;
Type of set I/O in motion (0-Time, 1-Path percentage, 2-Distance)

double Value;

When the type is Time, a value greater than 0 means the signal is outputted after

robot moves for "Value" seconds, a value less than or equal to 0 means the output

signal is outputted "Value" seconds before the robot reaches the target point;

When the type is Path Percentage, the signal is output when the robot moves by

"Value"% of the entire path from the start point to the end point;

When type is Distance, a value greater than 0 means the signal is outputted after the

robot moves by "value" mm from the start point, and a value less than or equal to 0

indicates that the signal is outputted "value" mm before the robot reaches the end

point.

}MOV_IO;

(2) API Connection Failure Table

No.

Function

Return

Value

Fault Print Information Description Solution

0 0 / Instruction is normal /

1 -1 e1:syntax error
The instruction has a

syntax error.

The version of the

dynamic link library is

incorrect. Ask for

technical support.

2 -2 e2:number of parameter The number of The version of the

328

unmatched instruction parameters

does not match.

dynamic link library is

incorrect. Ask for

technical support.

3 -3 e3:parameter value illegal
The instruction parameter

value is not reasonable.

Reset the function

parameters according to

the function description.

4 -4 e4:not allowed in current mode
This instruction is not

allowed in current mode.

Switch to teach or play

mode and then recall the

instruction according to

the actual situation.

5 -5
e5:not allowed when robot is

running

This instruction is not

allowed while the robot

is running.

Recall the instruction

after the robot stops.

6 -6 e6:system in emergency
The system is in an

emergency stop.

Release the emergency

stop and recall the

instruction.

7 -7 e7:system fault The system is faulty.

Recall the instruction

after clearing system

fault.

8 -8 e8:motion mode closed
The data streaming mode

is closed.

Recall the instruction

after opening the data

streaming mode.

9 -9 E9: Motor off The motor is not enabled.
Recall the instruction

after enabling the motor.

10 -10 e10:rsv Reserved Reserved

11 -11 e11:instruction unfinished

The motion instruction

buffer still contains

unfinished instructions.

Recall the instruction

when the motion

instruction buffer is free.

12 -12 e12:output unavailable

User does not have

permission to control the

output port.

Recall the instruction

after obtaining

permission for the port, or

use other available ports.

13 -13 e13:read AD failed
Failed to read AD

channel.

Confirm that the module

is configured correctly

and then recall the

instruction.

14 -14 e14:write DA failed
Failed to write the AD

channel.

Confirm that the module

is configured correctly

and then recall the

instruction.

15 -15 e15:write DO failed
Failed to write the DO

channel.

Confirm that the module

is configured correctly

and then recall the

instruction.

329

16 -16 e16:command invalid
Pause instruction is

invalid.

The pause function

cannot be not called when

the program is stopped.

17 -17
e17:not allowed in current

coordinate

The instruction is not

allowed under the current

coordinate system.

Recall the instruction

after switching the

coordinate system.

18 -18 e18:mode conflict Motion mode conflict.

Recall the function after

closing the data streaming

mode.

19 -19 e19:rsv Reserved Reserved

20 -20 e20:program non-existent
The program path does

not exist.

Re-enter the path or

re-edit the teaching

program.

21 -21 e21:point non-existent
Position point P or offset

LPR does not exist.

Call the instruction after

confirming that the points

are correct.

22 -22 e22:calc error Internal calculation error.

Make sure that the robot

is not at a singular

position and recall the

instruction.

23 -23 e23:rsv Reserved Reserved

24 -24 e24:without permit

The current Ethernet

device is not granted the

control permission.

Recall the instruction

after obtaining the control

permission.

25 -25 e25:ETH without authorization

The current control

device is not an Ethernet

device.

Recall the instruction

after switching the

control permission.

26 -26 e26:rsv Reserved Reserved

27 -27 e27:low user grade
The current user privilege

level is low.

Recall the instruction

after login as a user with

higher privilege.

28 -28 e28:permit occupied

The control permission

has been granted to

another Ethernet device.

Recall the instruction

after obtaining the control

permission.

29 -29 e29:internal fault Internal call error

The version of the

dynamic link library is

incorrect. Ask for

technical support.

30 -30 e30:modbus unavailable
Modbus slave is not

configured.

Configure Modbus slave

and recall the instruction.

31 -31 e31:condition unfulfilled to write
System parameters

cannot be set at this time.

Recall the instruction

after the robot stops.

32 -32 e32:rsv Reserved Reserved

33 -33 e33:pallet para err Pallet parameter error 33

330

33 -253 /
Internal calculation

exception

The version of the

dynamic link library is

incorrect. Ask for

technical support.

34 -254 /
The input function

parameters are incorrect.

Reset the function

parameters according to

the function description.

35 -255 /

The network

communication is

abnormal.

Check that the network

connection is correct and

recall the instruction.

331

Appendix 3: Modbus Slave Address Table

Note: The following Modbus slave address table is only applicable for S03.20R version (or

version for which the legacy address table feature is enabled)

 Read-only (4096) physical discrete input, parameter: 0x02

Address Address
Variable Name

Data

Type
Description Remarks

DEC HEX

0 0x0000 QW65024,bit0 Bit Enable status (0-OFF, 1-ON)

1 0x0001 QW65024,bit1 Bit
Program status (0-Non-running,

1-Running)

This coil

value is

also 0 when

the system

is paused.

2 0x0002 QW65024,bit2 Bit
Emergency stop status (0-OFF,

1-ON)

3 0x0003 QW65024,bit3 Bit
System fault status (0-No fault,

1-Fault)

4 0x0004 QW65024,bit4 Bit Servo fault (0-No fault, 1-Fault)

5 0x0005 QW65024,bit5 Bit

System startup completion

status (0-Incomplete,

1-Complete)

6 0x0006 QW65024,bit6 Bit

Program reset completion status

(main task and dynamic task

return to start line)

1 indicates

a successful

reset;

0 when

program is

running.

7 0x0007 QW65024,bit7 Bit
System warning status (0-No

warning, 1-Warning)

8 0x0008 QW65024,bit8 Bit
Servo warning (0-No warning,

1-Warning)

9 0x0009 QW65024,bit9 Bit Communication heartbeat

A 0-1-0

value

indicates

normal

communica

tion and a

constant

value

indicates

abnormal

332

Address Address Variable Name Data

Type

Description Remarks

communica

tion.

10 0x000A
QW65024,bit1

0
Bit Safety door warning status

0-No

warning,

1-Warning

(An alarm

is generated

only when

the safety

door is

opened in

the play

mode.)

… … …. Bit Reserved

18 0x0012 QW65025,bit2 Bit
Direct motion status (0-Invalid

or Not arrived, 1-Arrived)

19 0x0013 QW65025,bit3 Bit
P variable read (0-Failure,

1-Success)

20 0x0014 QW65025,bit4 Bit
P variable writ (0-Failure,

1-Success)

21 0x0015 QW65025,bit5 Bit Reserved

22 0x0016 QW65025,bit6 Bit
P variable batch read (0-Failure,

1-Success)

1 only if all

variables

are read

successfully

.

… … …. Bit Reserved

64 0x0040 QW65028,bit0 Bit
IN[000] status (0-OFF, 1-ON,

same below)

When the

correspondi

ng IN

signal is not

supported

by the I/O

module, the

initialized

value OFF

is displayed

by default,

same

below.

65 0x0041 QW65028,bit1 Bit IN[001]

66 0x0042 QW65028,bit2 Bit IN[002]

67 0x0043 QW65028,bit3 Bit IN[003]

333

Address Address Variable Name Data

Type

Description Remarks

68 0x0044 QW65028,bit4 Bit IN[004]

69 0x0045 QW65028,bit5 Bit IN[005]

70 0x0046 QW65028,bit6 Bit IN[006]

71 0x0047 QW65028,bit7 Bit IN[007]

72 0x0048 QW65028,bit8 Bit IN[008]

73 0x0049 QW65028,bit9 Bit IN[009]

74 0x004A
QW65028,bit1

0
Bit IN[010]

75 0x004B
QW65028,bit1

1
Bit IN[011]

76 0x004C
QW65028,bit1

2
Bit IN[012]

77 0x004D
QW65028,bit1

3
Bit IN[013]

78 0x004E
QW65028,bit1

4
Bit IN[014]

79 0x004F
QW65028,bit1

5
Bit IN[015]

80 0x0050 QW65029,bit0 Bit IN[016]

81 0x0051 QW65029,bit1 Bit IN[017]

82 0x0052 QW65029,bit2 Bit IN[018]

83 0x0053 QW65029,bit3 Bit IN[019]

84 0x0054 QW65029,bit4 Bit IN[020]

85 0x0055 QW65029,bit5 Bit IN[021]

86 0x0056 QW65029,bit6 Bit IN[022]

87 0x0057 QW65029,bit7 Bit IN[023]

88 0x0058 QW65029,bit8 Bit IN[024]

89 0x0059 QW65029,bit9 Bit IN[025]

90 0x005A
QW65029,bit1

0
Bit IN[026]

91 0x005B
QW65029,bit1

1
Bit IN[027]

92 0x005C
QW65029,bit1

2
Bit IN[028]

93 0x005D
QW65029,bit1

3
Bit IN[029]

94 0x005E
QW65029,bit1

4
Bit IN[030]

95 0x005F
QW65029,bit1

5
Bit IN[031]

96 0x0060 QW65030,bit0 Bit IN[032]

97 0x0061 QW65030,bit1 Bit IN[033]

334

Address Address Variable Name Data

Type

Description Remarks

98 0x0062 QW65030,bit2 Bit IN[034]

99 0x0063 QW65030,bit3 Bit IN[035]

100 0x0064 QW65030,bit4 Bit IN[036]

101 0x0065 QW65030,bit5 Bit IN[037]

102 0x0066 QW65030,bit6 Bit IN[038]

103 0x0067 QW65030,bit7 Bit IN[039]

104 0x0068 QW65030,bit8 Bit IN[040]

105 0x0069 QW65030,bit9 Bit IN[041]

106 0x006A
QW65030,bit1

0
Bit IN[042]

107 0x006B
QW65030,bit1

1
Bit IN[043]

108 0x006C
QW65030,bit1

2
Bit IN[044]

109 0x006D
QW65030,bit1

3
Bit IN[045]

110 0x006E
QW65030,bit1

4
Bit IN[046]

111 0x006F
QW65030,bit1

5
Bit IN[047]

112 0x0070 QW65031,bit0 Bit IN[048]

113 0x0071 QW65031,bit1 Bit IN[049]

114 0x0072 QW65031,bit2 Bit IN[050]

115 0x0073 QW65031,bit3 Bit IN[051]

116 0x0074 QW65031,bit4 Bit IN[052]

117 0x0075 QW65031,bit5 Bit IN[053]

118 0x0076 QW65031,bit6 Bit IN[054]

119 0x0077 QW65031,bit7 Bit IN[055]

120 0x0078 QW65031,bit8 Bit IN[056]

121 0x0079 QW65031,bit9 Bit IN[057]

122 0x007A
QW65031,bit1

0
Bit IN[058]

123 0x007B
QW65031,bit1

1
Bit IN[059]

124 0x007C
QW65031,bit1

2
Bit IN[060]

125 0x007D
QW65031,bit1

3
Bit IN[061]

126 0x007E
QW65031,bit1

4
Bit IN[062]

127 0x007F
QW65031,bit1

5
Bit IN[063]

335

Address Address Variable Name Data

Type

Description Remarks

128 0x0080 QW65032,bit0 Bit
OUT[000] status (0-OFF, 1-ON,

same below)

129 0x0081 QW65032,bit1 Bit OUT[001]

130 0x0082 QW65032,bit2 Bit OUT[002]

131 0x0083 QW65032,bit3 Bit OUT[003]

132 0x0084 QW65032,bit4 Bit OUT[004]

133 0x0085 QW65032,bit5 Bit OUT[005]

134 0x0086 QW65032,bit6 Bit OUT[006]

135 0x0087 QW65032,bit7 Bit OUT[007]

136 0x0088 QW65032,bit8 Bit OUT[008]

137 0x0089 QW65032,bit9 Bit OUT[009]

138 0x008A
QW65032,bit1

0
Bit OUT[010]

139 0x008B
QW65032,bit1

1
Bit OUT[011]

140 0x008C
QW65032,bit1

2
Bit OUT[012]

141 0x008D
QW65032,bit1

3
Bit OUT[013]

142 0x008E
QW65032,bit1

4
Bit OUT[014]

143 0x008F
QW65032,bit1

5
Bit OUT[015]

144 0x0090 QW65033,bit0 Bit OUT[016]

145 0x0091 QW65033,bit1 Bit OUT[017]

146 0x0092 QW65033,bit2 Bit OUT[018]

147 0x0093 QW65033,bit3 Bit OUT[019]

148 0x0094 QW65033,bit4 Bit OUT[020]

149 0x0095 QW65033,bit5 Bit OUT[021]

150 0x0096 QW65033,bit6 Bit OUT[022]

151 0x0097 QW65033,bit7 Bit OUT[023]

152 0x0098 QW65033,bit8 Bit OUT[024]

153 0x0099 QW65033,bit9 Bit OUT[025]

154 0x009A
QW65033,bit1

0
Bit OUT[026]

155 0x009B
QW65033,bit1

1
Bit OUT[027]

156 0x009C
QW65033,bit1

2
Bit OUT[028]

157 0x009D
QW65033,bit1

3
Bit OUT[029]

158 0x009E QW65033,bit1 Bit OUT[030]

336

Address Address Variable Name Data

Type

Description Remarks

4

159 0x009F
QW65033,bit1

5
Bit OUT[031]

160 0x00A0 QW65034,bit0 Bit OUT[032]

161 0x00A1 QW65034,bit1 Bit OUT[033]

162 0x00A2 QW65034,bit2 Bit OUT[034]

163 0x00A3 QW65034,bit3 Bit OUT[035]

164 0x00A4 QW65034,bit4 Bit OUT[036]

165 0x00A5 QW65034,bit5 Bit OUT[037]

166 0x00A6 QW65034,bit6 Bit OUT[038]

167 0x00A7 QW65034,bit7 Bit OUT[039]

168 0x00A8 QW65034,bit8 Bit OUT[040]

169 0x00A9 QW65034,bit9 Bit OUT[041]

170 0x00AA
QW65034,bit1

0
Bit OUT[042]

171 0x00AB
QW65034,bit1

1
Bit OUT[043]

172 0x00AC
QW65034,bit1

2
Bit OUT[044]

173 0x00AD
QW65034,bit1

3
Bit OUT[045]

174 0x00AE
QW65034,bit1

4
Bit OUT[046]

175 0x00AF
QW65034,bit1

5
Bit OUT[047]

176 0x00B0 QW65035,bit0 Bit OUT[048]

177 0x00B1 QW65035,bit1 Bit OUT[049]

178 0x00B2 QW65035,bit2 Bit OUT[050]

179 0x00B3 QW65035,bit3 Bit OUT[051]

180 0x00B4 QW65035,bit4 Bit OUT[052]

181 0x00B5 QW65035,bit5 Bit OUT[053]

182 0x00B6 QW65035,bit6 Bit OUT[054]

183 0x00B7 QW65035,bit7 Bit OUT[055]

184 0x00B8 QW65035,bit8 Bit OUT[056]

185 0x00B9 QW65035,bit9 Bit OUT[057]

186 0x00BA
QW65035,bit1

0
Bit OUT[058]

187 0x00BB
QW65035,bit1

1
Bit OUT[059]

188 0x00BC
QW65035,bit1

2
Bit OUT[060]

189 0x00BD QW65035,bit1 Bit OUT[061]

337

Address Address Variable Name Data

Type

Description Remarks

3

190 0x00BE
QW65035,bit1

4
Bit OUT[062]

191 0x00BF
QW65035,bit1

5
Bit OUT[063]

192 0x00C0 QW65036,bit0 Bit
J1 servo fault (0-No Fault,

1-Fault, same below)

193 0x00C1 QW65036,bit1 Bit J2 servo fault

194 0x00C2 QW65036,bit2 Bit J3 servo fault

195 0x00C3 QW65036,bit3 Bit J4 servo fault

196 0x00C4 QW65036,bit4 Bit J5 servo fault

197 0x00C5 QW65036,bit5 Bit J6 servo fault

198 0x00C6 QW65036,bit6 Bit J7 servo fault

199 0x00C7 QW65036,bit7 Bit J8 servo fault

200 0x00C8 QW65036,bit8 Bit

J1 servo warning (0-No

warning, 1-Warning, same

below)

201 0x00C9 QW65036,bit9 Bit J2 servo warning

202 0x00CA
QW65036,bit1

0
Bit J3 servo warning

203 0x00CB
QW65036,bit1

1
Bit J4 servo warning

204 0x00CC
QW65036,bit1

2
Bit J5 servo warning

205 0x00CD
QW65036,bit1

3
Bit J6 servo warning

206 0x00CE
QW65036,bit1

4
Bit J7 servo warning

207 0x00CF
QW65036,bit1

5
Bit J8 servo warning

… … … Bit Reserved

2048 0x0800 QW65152,bit0 Bit

User-defined

… … … Bit

4095 0x0FFF
QW65279,bit1

5
Bit

 Read-write (4096) coil, parameter: 0x01, 0x05, 0x0f

Address Address
Variable Name

Data

Type
Description Remarks

DEC HEX

4096 0x1000 QW65280,bit0 Bit Program start (Recurrent)

4097 0x1001 QW65280,bit1 Bit Program stop (Recurrent)

338

Address Address Variable Name Data

Type

Description Remarks

4098 0x1002 QW65280,bit2 Bit

Program reset (main task and

dynamic task return to start

line)

(Recurrent)

4099 0x1003 QW65280,bit3 Bit
Enable switch (0-OFF,

1-ON)

(Special,

0->1 for ON,

1->0 for

OFF)

4100 0x1004 QW65280,bit4 Bit
Emergency stop switch

(0-OFF, 1-ON)
(Hold)

4101 0x1005 QW65280,bit5 Bit Clears alarm (Recurrent)

4102 0x1006 QW65280,bit6 Bit Switches to teach mode

(Recurrent)

When

switched

from the

play mode

to the teach

mode, the

program

will

automatical

ly return to

the start

line.

4103 0x1007 QW65280,bit7 Bit Switches to play mode

(Recurrent)

When

switched

from the

teach mode

to the play

mode, the

program

will

automatical

ly return to

the start

line.

… … …… Bit Reserved

4112 0x1010 QW65281,bit0 Bit Teach J1/X+

(Special

type, 0-> 1

for Start,

1-> 0 for

Stop, same

below)

339

Address Address Variable Name Data

Type

Description Remarks

4113 0x1011 QW65281,bit1 Bit Teach J2/Y+ (Special)

4114 0x1012 QW65281,bit2 Bit Teach J3/Z+ (Special)

4115 0x1013 QW65281,bit3 Bit
Teach J4/ (Rz+ of SCARA

robot, Rx+ of 6-axis robot)
(Special)

4116 0x1014 QW65281,bit4 Bit Teach J5+/Six Joint Ry+ (Special)

4117 0x1015 QW65281,bit5 Bit
Teach J6+/Rz+ of 6-axis

robot
(Special)

4118 0x1016 QW65281,bit6 Bit Reserved

4119 0x1017 QW65281,bit7 Bit Reserved

4120 0x1018 QW65281,bit8 Bit Teach J1/X- (Special)

4121 0x1019 QW65281,bit9 Bit Teach J2/Y- (Special)

4122 0x101A QW65281,bit10 Bit Teach J3/Z- (Special)

4123 0x101B QW65281,bit11 Bit
Teach J4/ (Rz- of SCARA

robot, Rx- of 6-axis robot)
(Special)

4124 0x101C QW65281,bit12 Bit Teach J5-/Ry- of 6-axis robot (Special)

4125 0x101D QW65281,bit13 Bit Teach J6-/Rz- of 6-axis robot (Special)

4126 0x101E QW65281,bit14 Bit Reserved

4127 0x101F QW65281,bit15 Bit Reserved

4128 0x1020 QW65282,bit0 Bit

Writes the robot's current

position to the current P

variable

(Recurrent)

4129 0x1021 QW65282,bit1 Bit

Writes the modified position

(MW34855, etc.) to the

current P variable

(Recurrent)

4130 0x1022 QW65282,bit2 Bit
Moves directly to the current

P variable position

(Special

type, 0-> 1

for Start,

1-> 0 for

Stop)

… … …… Bit Reserved

4144 0x1030 QW65283,bit0 Bit
OUT[000] control command

(0-OFF, 1-ON, same below)

(Special,

0->1 for

ON, 1->0

for OFF,

same

below)

4145 0x1031 QW65283,bit1 Bit OUT[001]

4146 0x1032 QW65283,bit2 Bit OUT[002]

4147 0x1033 QW65283,bit3 Bit OUT[003]

4148 0x1034 QW65283,bit4 Bit OUT[004]

4149 0x1035 QW65283,bit5 Bit OUT[005]

4150 0x1036 QW65283,bit6 Bit OUT[006]

340

Address Address Variable Name Data

Type

Description Remarks

4151 0x1037 QW65283,bit7 Bit OUT[007]

4152 0x1038 QW65283,bit8 Bit OUT[008]

4153 0x1039 QW65283,bit9 Bit OUT[009]

4154 0x103A QW65283,bit10 Bit OUT[010]

4155 0x103B QW65283,bit11 Bit OUT[011]

4156 0x103C QW65283,bit12 Bit OUT[012]

4157 0x103D QW65283,bit13 Bit OUT[013]

4158 0x103E QW65283,bit14 Bit OUT[014]

4159 0x103F QW65283,bit15 Bit OUT[015]

4160 0x1040 QW65284,bit0 Bit OUT[016]

4161 0x1041 QW65284,bit1 Bit OUT[017]

4162 0x1042 QW65284,bit2 Bit OUT[018]

4163 0x1043 QW65284,bit3 Bit OUT[019]

4164 0x1044 QW65284,bit4 Bit OUT[020]

4165 0x1045 QW65284,bit5 Bit OUT[021]

4166 0x1046 QW65284,bit6 Bit OUT[022]

4167 0x1047 QW65284,bit7 Bit OUT[023]

4168 0x1048 QW65284,bit8 Bit OUT[024]

4169 0x1049 QW65284,bit9 Bit OUT[025]

4170 0x104A QW65284,bit10 Bit OUT[026]

4171 0x104B QW65284,bit11 Bit OUT[027]

4172 0x104C QW65284,bit12 Bit OUT[028]

4173 0x104D QW65284,bit13 Bit OUT[029]

4174 0x104E QW65284,bit14 Bit OUT[030]

4175 0x104F QW65284,bit15 Bit OUT[031]

4176 0x1050 QW65285,bit0 Bit OUT[032]

4177 0x1051 QW65285,bit1 Bit OUT[033]

4178 0x1052 QW65285,bit2 Bit OUT[034]

4179 0x1053 QW65285,bit3 Bit OUT[035]

4180 0x1054 QW65285,bit4 Bit OUT[036]

4181 0x1055 QW65285,bit5 Bit OUT[037]

4182 0x1056 QW65285,bit6 Bit OUT[038]

4183 0x1057 QW65285,bit7 Bit OUT[039]

4184 0x1058 QW65285,bit8 Bit OUT[040]

4185 0x1059 QW65285,bit9 Bit OUT[041]

4186 0x105A QW65285,bit10 Bit OUT[042]

4187 0x105B QW65285,bit11 Bit OUT[043]

4188 0x105C QW65285,bit12 Bit OUT[044]

4189 0x105D QW65285,bit13 Bit OUT[045]

4190 0x105E QW65285,bit14 Bit OUT[046]

4191 0x105F QW65285,bit15 Bit OUT[047]

4192 0x1060 QW65286,bit0 Bit OUT[048]

341

Address Address Variable Name Data

Type

Description Remarks

4193 0x1061 QW65286,bit1 Bit OUT[049]

4194 0x1062 QW65286,bit2 Bit OUT[050]

4195 0x1063 QW65286,bit3 Bit OUT[051]

4196 0x1064 QW65286,bit4 Bit OUT[052]

4197 0x1065 QW65286,bit5 Bit OUT[053]

4198 0x1066 QW65286,bit6 Bit OUT[054]

4199 0x1067 QW65286,bit7 Bit OUT[055]

4200 0x1068 QW65286,bit8 Bit OUT[056]

4201 0x1069 QW65286,bit9 Bit OUT[057]

4202 0x106A QW65286,bit10 Bit OUT[058]

4203 0x106B QW65286,bit11 Bit OUT[059]

4204 0x106C QW65286,bit12 Bit OUT[060]

4205 0x106D QW65286,bit13 Bit OUT[061]

4206 0x106E QW65286,bit14 Bit OUT[062]

4207 0x106F QW65286,bit15 Bit OUT[063]

… … … Bit Reserved

6144 0x1800 QW65408,bit0 Bit

User-defined

… … …… Bit

8191 0x1FFF QW65535,bit15 Bit

 Read-only (32768) input register, parameter:0x04

Address Address
Variable Name Data Type Description Remarks

DEC HEX

0 0x0 MW0 Word
Reserved for other use of

the system (2048 words)
 … …… Word

2047 0x07FF MW2047 Word

2048 0x0800 MW2048 Word
Current coordinate

system

2049 0x0801 MW2049 Word Current speed

2050 0x0802 MW2050 Word Fault record (hex display)

2051 0x0803 MW2051 Word
Current mode (1-Teach,

2-Play)

2052 0x0804 MW2052 Single

precision

floating

point

J1/X coordinate low byte

Refers to

the robot's

coordinate

values in

the

current

coordinate

system

(The tool

2053 0x0805 MW2053 J2/X coordinate high byte

2054 0x0806 MW2054 Single

precision

floating

point

J2/Y coordinate low byte

2055 0x0807 MW2055 J2/Y coordinate high byte

2056 0x0808 MW2056 Single

precision

J3/Z coordinate low byte

2057 0x0809 MW2057 J3/Z coordinate high byte

342

floating

point

coordinate

system/us

er

coordinate

system

must be

meaningf

ul to

correctly

display

the values

in the tool

coordinate

system/us

er

coordinate

system.)

2058 0x080A MW2058 Single

precision

floating

point

J4/A coordinate low byte

2059 0x080B MW2059 J4/A coordinate high byte

2060 0x080C MW2060 Single

precision

floating

point

J5/B coordinate low byte

2061 0x080D MW2061 J5/B coordinate high byte

2062 0x080E MW2062

Single

precision

floating

point

J6/C coordinate low byte

2063 0x080F MW2063 J6/C coordinate high byte

2064 0x0810 MW2064
Word

(unsigned)

Current tool coordinate

system number (Only

meaningful under tool

coordinate system)

2065 0x0811 MW2065
Word

(unsigned)

Current user coordinate

system number (Only

meaningful under user

coordinate system)

… … …… Word Reserved

2081 0x0821 MW2081
Word

(unsigned)

Current direct motion

mode (0-MovJ, 1-MovL,

2-Jump, 3-JumpL)

2082 0x0822 MW2082
Single

precision

floating

point

Low byte of LH

parameter for current

jump motion

2083 0x0823 MW2083
High byte of LH

parameter for current

343

jump motion

2084 0x0824 MW2084 Single

precision

floating

point

Low byte of MH

parameter for current

jump motion

2085 0x0825 MW2085

High byte of MH

parameter for current

jump motion

2086 0x0826 MW2086
Single

precision

floating

point

Low byte of RH

parameter for current

jump motion

2087 0x0827 MW2087
Current jump motion RH

parameter high

… … …… Word Reserved

2116 0x0844 MW2116
Word

(unsigned)
J1 servo alarm code

2117 0x0845 MW2117
Word

(unsigned)
J2 servo alarm code

2118 0x0846 MW2118
Word

(unsigned)
J3 servo alarm code

2119 0x0847 MW2119
Word

(unsigned)
J4 servo alarm code

2120 0x0848 MW2120
Word

(unsigned)
J5 servo alarm code

2121 0x0849 MW2121
Word

(unsigned)
J6 servo alarm code

2122 0x084A MW2122
Word

(unsigned)
J7 servo alarm code

2123 0x084B MW2123
Word

(unsigned)
J8 servo alarm code

… … …… Word Reserved

2146 0x0862 MW2146
Word

(unsigned)

Queries the device to

which the control

permission belongs

(0-InoTeachPad,

1-InoRobShop, 2-Remote

Ethernet, 3-Remote I/O,

4-Remote Modbus)

2147 0x0863 MW2147
Word

(unsigned)
Reserved

4168 0x1048 MW 4168
Single

precision

floating

point

Low byte of J1/X

coordinate read by P

variable

4169 0x1049 MW 4169
High byte of J1/X

coordinate read by P

344

variable

4170 0x104A MW 4170 Single

precision

floating

point

Low byte of J2/Y

coordinate read by P

variable

4171 0x104B MW 4171

High byte of J2/Y

coordinate read by P

variable

4172 0x104C MW 4172 Single

precision

floating

point

Low byte of J3/Z

coordinate read by P

variable

4173 0x104D MW 4173

High byte of J3/Z

coordinate read by P

variable

4174 0x104E MW 4174 Single

precision

floating

point

Low byte of J4/A

coordinate read by P

variable

4175 0x104F NW4175

High byte of J4/A

coordinate read by P

variable

4176 0x1050 MW 4176 Single

precision

floating

point

Low byte of J5/B

coordinate read by P

variable

4177 0x1051 MW 4177

High byte of J5/B

coordinate read by P

variable

4178 0x1052 MW 4178 Single

precision

floating

point

Low byte of J6/C

coordinate read by P

variable

4179 0x1053 MW 4179

High byte of J6/C

coordinate read by P

variable

4180 0x1054 NW4180
Word

(signed)

Arm parameter 1 read by

P variable

4181 0x1055 NW4181
Word

(signed)

Arm parameter 2 read by

P variable

4182 0x1056 MW 4182
Word

(signed)

Arm parameter 3 read by

P variable

4183 0x1057 MW 4183
Word

(signed)

Arm parameter 4 read by

P variable

4184 0x1058 MW 4184
Word

(unsigned)

Coordinate system read

by P variable

4185 0x1059 MW 4185
Word

(unsigned)

Tool coordinate system

number read by P

variable

345

4186 0x105A MW 4186
Word

(unsigned)

User coordinate system

number read by P

variable

4187 0x105B NW4187
Word

(unsigned)
Reserved

4188 0x105C MW 4188

Single

precision

floating

point

Low byte of J1/X

coordinate read by P[i+0]

variable

Data is

invalid

when

MW3485

3 is 0, i is

the value

of

MW3485

2, same

below

4189 0x105D MW 4189

High byte of J1/X

coordinate read by P[i+0]

variable

4190 0x105E MW 4190 Single

precision

floating

point

Low byte of J2/Y

coordinate read by P[i+0]

variable

4191 0x105F MW 4191

High byte of J2/Y

coordinate read by P[i+0]

variable

4192 0x1060 MW 4192 Single

precision

floating

point

Low byte of J3/Z

coordinate read by P[i+0]

variable

4193 0x1061 MW 4193

High byte of J3/Z

coordinate read by P[i+0]

variable

4194 0x1062 MW 4194 Single

precision

floating

point

Low byte of J4/A

coordinate read by P[i+0]

variable

4195 0x1063 MW 4195

High byte of J4/A

coordinate read by P[i+0]

variable

4196 0x1064 MW 4196 Single

precision

floating

point

Low byte of J5/B

coordinate read by P[i+0]

variable

4197 0x1065 MW 4197

High byte of J5/B

coordinate read by P[i+0]

variable

4198 0x1066 MW 4198
Single

precision

floating

point

Low byte of J6/C

coordinate read by P[i+0]

variable

4199 0x1067 MW 4199
High byte of J6/C

coordinate read by P[i+0]

346

variable

4200 0x1068 MW 4200
Word

(signed)

Arm parameter 1 read by

P[i+0] variable

4201 0x1069 MW 4201
Word

(signed)

Arm parameter 2 read by

P[i+0] variable

4202 0x106A MW 4202
Word

(signed)

Arm parameter 3 read by

P[i+0] variable

4203 0x106B MW 4203
Word

(signed)

Arm parameter 4 read by

P[i+0] variable

4204 0x106C MW 4204
Word

(unsigned)

Coordinate system read

by P[i+0] variable

4205 0x106D MW 4205
Word

(unsigned)

Tool coordinate system

number read by P[i+0]

variable

4206 0x106E MW 4206
Word

(unsigned)

User coordinate system

number read by P[i+0]

variable

… … … …

[4168+20*n] …
MW(2168+20*

n)

Single

precision

floating

point

Low byte of J1/X

coordinate read by

P[i+n-1] variable

N is the

value of

MW34853

with a valid

range of 1

to 100, i is

the value of

MW34852,

same below

[4169+20*n] …
MW(2169+20*

n)

High byte of J1/X

coordinate read by

P[i+n-1] variable

[4170+20*n] …
MW(2170+20*

n)
Single

precision

floating

point

Low byte of J2/Y

coordinate read by

P[i+n-1] variable

[4171+20*n] …
MW(2171+20*

n)

High byte of J2/Y

coordinate read by

P[i+n-1] variable

[4172+20*n] …
MW(2172+20*

n)
Single

precision

floating

point

Low byte of J3/Z

coordinate read by

P[i+n-1] variable

[4173+20*n] …
MW(2173+20*

n)

High byte of J3/Z

coordinate read by

P[i+n-1] variable

[4174+20*n] …
MW(2174+20*

n)

Single

precision

floating

point

Low byte of J4/A

coordinate read by

P[i+n-1] variable

[4175+20*n] …
MW(2175+20*

n)

High byte of J4/A

coordinate read by

347

P[i+n-1] variable

[4176+20*n] …
MW(2176+20*

n)
Single

precision

floating

point

Low byte of J5/B

coordinate read by

P[i+n-1] variable

[4177+20*n] …
MW(2177+20*

n)

High byte of J5/B

coordinate read by

P[i+n-1] variable

[4178+20*n] …
MW(2178+20*

n)
Single

precision

floating

point

Low byte of J6/C

coordinate read by

P[i+n-1] variable

[4179+20*n] …
MW(2179+20*

n)

High byte of J6/C

coordinate read by

P[i+n-1] variable

[4180+20*n] …
MW(2180+20*

n)

Word

(signed)

Arm parameter 1 read by

P[i+n-1] variable

[4181+20*n] …
MW(2181+20*

n)

Word

(signed)

Arm parameter 2 read by

P[i+n-1] variable

[4182+20*n] …
MW(2182+20*

n)

Word

(signed)

Arm parameter 3 read by

P[i+n-1] variable

[4183+20*n] …
MW(2183+20*

n)

Word

(signed)

Arm parameter 4 read by

P[i+n-1] variable

[4184+20*n] …
MW(2184+20*

n)

Word

(unsigned)

Coordinate system

number read by P[i+n-1]

variable

[4185+20*n] …
MW(2185+20*

n)

Word

(unsigned)

Tool coordinate system

number read by P[i+n-1]

variable

[4186+20*n] …
MW(2186+20*

n)

Word

(unsigned)

User coordinate system

number read by P[i+n-1]

variable

… … … Word Reserved

8192 0x2000 MW8192
Word

(unsigned)
B0 variable read value

8193 0x2001 MW8193
Word

(unsigned)
B1 variable read value

8194 0x2002 MW8194
Word

(unsigned)
B2 variable read value

8195 0x2003 MW8195
Word

(unsigned)
B3 variable read value

8196 0x2004 MW8196
Word

(unsigned)
B4 variable read value

… … …
Word

(unsigned)
…

348

[m] … …
Word

(unsigned)

B[n] variable read value

(m=8192+n)

n is the B

variable

index.

… … …
Word

(unsigned)
…

8442 0x20FA MW8442
Word

(unsigned)
B250 variable read value

8443 0x20FB MW8443
Word

(unsigned)
B251 variable read value

8444 0x20FC MW8444
Word

(unsigned)
B252 variable read value

8445 0x20FD MW8445
Word

(unsigned)
B253 variable read value

8446 0x20FE MW8446
Word

(unsigned)
B254 variable read value

8447 0x20FF MW8447
Word

(unsigned)
B255 variable read value

8448 0x2100
MW8448

Double

word

(signed)

Low byte of value read

by R0 variable

8449 0x2101
MW8449 High byte of value read

by R0 variable

8450 0x2102
MW8450

Double

word

(signed)

Low byte of value read

by R1 variable

8451 0x2103
MW8451 High byte of value read

by R1 variable

8452 0x2104
MW8452

Double

word

(signed)

Low byte of value read

by R2 variable

8453 0x2105
MW8453 High byte of value read

by R2 variable

… …
…

 …

[m]

Double

Word

(signed)

Low byte of value read

by R[n] variable

(m=8448+n*2)

n is the R

variable

index.

[m+1] …

… High byte of value read

by R[n] variable

(m=8448+n*2)

n is the R

variable

index.

… …
…

 …

8954 0x22FA
MW8954

Double

word

(signed)

Low byte of value read

by R253 variable

8955 0x22FB
MW8955 High byte of value read

by R253 variable

8956 0x22FC
MW8956

Double Low byte of value read

349

word

(signed)

by R254 variable

8957 0x22FD
MW8957 High byte of value read

by R254 variable

8958 0x22FE
MW8958

Double

word

(signed)

Low byte of value read

by R255 variable

8959 0x22FF
MW8959 High byte of value read

by R255 variable

8960 0x2300
MW8960

Double-prec

ision

floating

point

Lowest byte of value read

by D0 variable

8961 0x2301
MW8961 Low byte of value read

by D0 variable

8962 0x2302
MW8962 High byte of value read

by D0 variable

8963 0x2303
MW8963 Highest byte of value

read by D0 variable

8964 0x2304
MW8964

Double-prec

ision

floating

point

Lowest byte of value read

by D1 variable

8965 0x2305
MW8965 Low byte of value read

by D1 variable

8966 0x2306
MW8966 High byte of value read

by D1 variable

8967 0x2307
MW8967 Highest byte of value

read by D1 variable

8968 0x2308
MW8968

Double-prec

ision

floating

point

Lowest byte of value read

by D2 variable

8969 0x2309
MW8969 Low byte of value read

by D2 variable

8970 0x230A
MW8970 High byte of value read

by D2 variable

8971 0x230B
MW8971 Highest byte of value

read by D2 variable

… … … … …

[m] …

MW[m]

Double-prec

ision

floating

point

Lowest byte of value read

by D[n] variable

(m=89604+n*4)

n is the D

variable

index.

[m+1] …
MW[m+1] Low byte of value read

by D[n] variable

[m+2] …
MW[m+2] High byte of value read

by D[n] variable

[m+3] …
MW[m+3] Highest byte of value

read by D[n] variable

… … … … …

9972 0x26F4 MW9972 Double-prec Lowest byte of value read

350

 Read-write (32768) holding registers, parameter: 0x03, 0x06, 0x10

Address Address Variable

Name

Data

Type
Description Remarks

DEC HEX

32768 0x8000
MW327

68
Word

Reserved for other use of the

system

32769 0x8001
MW327

69
Word

… … …… Word

34800 0x87F0
MW348

00
Word

Selects the teaching mode

(0-Continuous teaching, 1-Jog

teaching)

(Level type)

34801 0x87F1 MW348 Single Low byte of joint step size for (Level type)

ision

floating

point

by D253 variable

9973 0x26F5
MW9973 Low byte of value read

by D253 variable

9974 0x26F6
MW9974 High byte of value read

by D253 variable

9975 0x26F7
MW9975 Highest byte of value

read by D253 variable

9976 0x26F8
MW9976

Double-prec

ision

floating

point

Lowest byte of value read

by D254 variable

9977 0x26F9
MW9977 Low byte of value read

by D254 variable

9978 0x26FA
MW9978 High byte of value read

by D254 variable

9979 0x26FB
MW9979 Highest byte of value

read by D254 variable

9980 0x26FC
MW9980

Double-prec

ision

floating

point

Lowest byte of value read

by D255 variable

9981 0x26FD
MW9981 Low byte of value read

by D255 variable

9982 0x26FE
MW9982 High byte of value read

by D255 variable

9983 0x26FF
MW9983 Highest byte of value

read by D255 variable

… … … … Reserved

16384 0x4000 …… Word

User-defined

… …… Word

32767 0x7fff MW32767 Word

351

Address Address Variable

Name

Data

Type
Description Remarks

DEC HEX

01 precision

floating

point

jog motion (in degree, valid in

joint coordinate system)

34802 0x87F2
MW348

02

High byte of joint step size for

jog motion

34803 0x87F3
MW348

03

Single

precision

floating

point

Low byte of linear step size for

jog motion (in mm, valid in

Cartesian coordinate system)

(Level type)

34804 0x87F4
MW348

04

High byte of linear step size for

jog motion

34805 0x87F5
MW348

05

Word

(unsigne

d)

Sets the direct motion mode

(0-MovJ, 1-MovL, 2-Jump,

3-JumpL)

(Level type)

34806 0x87F6
MW348

06

Single

precision

floating

point

Low byte of LH parameter for

jump motion
(Level type)

34807 0x87F7
MW348

07

High byte of LH parameter for

jump motion

34808 0x87F8
MW348

08

Single

precision

floating

point

Low byte of MH parameter for

jump motion
(Level type)

34809 0x87F9
MW348

09

High byte of MH parameter for

jump motion

34810 0x87FA
MW348

10

Single

precision

floating

point

Low byte of RH parameter for

jump motion
(Level type)

34811 0x87FB
MW348

11

High byte of RH parameter for

jump motion

… … … Word Reserved

34815 0x87FF
MW348

15
Word Heartbeat interval (unit: ms)

The default value

is 500ms and the

range is

[200-65000]ms.

34816 0x8800
MW348

16
Word

Selects the coordinate system

(1-Joint, 2-Cartesian, 3-Tool,

4-User)

(Level type)

34817 0x8801
MW348

17
Word Speed setting (1-100) (Level type)

34818 0x8802 MW348

18

Word Selects the tool number (0-15)
(Level type)

34819 0x8803 MW348

19

Word Selects the user coordinate

system number (0-15)
(Level type)

… … … Word Reserved

34852 0x8824
MW348

52

Word

(unsigne

d)

Starting subscript i (0-9999) of

batch read P variables

Range 0-9999

(level type)

352

Address Address Variable

Name

Data

Type
Description Remarks

DEC HEX

34853 0x8825
MW348

53

Word

(unsigne

d)

Number of batch read P

variables, n (P[0] - P[n-1], n has

a valid range of 1 to 100, not

read in batch for other values)

N+i should not

exceed 10000

(level type)1

34854 0x8826
MW348

54

Word

(unsigne

d)

Serial number of the current P

variable (waiting for read, write,

or motion operation)

(Level type)

34855 0x8827
MW348

55

Single

precision

floating

point

Low byte of J1/X coordinate

written by P variable

(Level type, same

below)

34856 0x8828
MW348

56

High byte of J1/X coordinate

written by P variable

34857 0x8829
MW348

57

Single

precision

floating

point

Low byte of J2/Y coordinate

written by P variable

34858 0x882A
MW348

58

High byte of J2/Y coordinate

written by P variable

34859 0x882B
MW348

59

Single

precision

floating

point

Low byte of J3/Z coordinate

written by P variable

34860 0x882C
MW348

60
Bit

High byte of J3/Z coordinate

written by P variable

34861 0x882D
MW348

61

Single

precision

floating

point

Low byte of J4/A coordinate

written by P variable

34862 0x882E
MW348

62

High byte of J4/A coordinate

written by P variable

34863 0x882F
MW348

63

Single

precision

floating

point

Low byte of J5/B coordinate

written by P variable

34864 0x8830
MW348

64

High byte of J5/B coordinate

written by P variable

34865 0x8831
MW348

65

Single

precision

floating

point

Low byte of J6/C coordinate

written by P variable

34866 0x8832
MW348

66

High byte of J6/C coordinate

written by P variable

34867 0x8833
MW348

67

Word

(signed)

Arm parameter 1 written by P

variable

Refer to Section

1.5.3 for the range

of arm

parameters.

34868 0x8834
MW348

68

Word

(signed)

Arm parameter 2 written by P

variable

1 When n+i exceeds 10000 it cannot be read, and the value of addresses such as MW4188 will change to 0

353

Address Address Variable

Name

Data

Type
Description Remarks

DEC HEX

34869 0x8835
MW348

69

Word

(signed)

Arm parameter 3 written by P

variable

34870 0x8836
MW348

70

Word

(signed)

Arm parameter 4 written by P

variable

34871 0x8837
MW348

71

Word

(unsigne

d)

Coordinate system written by P

variable
Range [1,7]

34872 0x8838
MW348

72

Word

(unsigne

d)

Too coordinate system number

written by P variable
Range [0,15]

34873 0x8839
MW348

73

Word

(unsigne

d)

User coordinate system number

written by P variable
Range [0,15]

34874 0x883A
MW348

74
Word Reserved

Occupied by the

written value of

the P variable

… … … Word -

36864 0x9000 MW368

64

Word

(unsigne

d)

B0 variable write value
(Level type, same

below)

36865 0x9001 MW368

65

Word

(unsigne

d)

B1 variable write value

36866 0x9002 MW368

66

Word

(unsigne

d)

B2 variable write value

36867 0x9003 MW368

67

Word

(unsigne

d)

B3 variable write value

36868 0x9004 MW368

68

Word

(unsigne

d)

B4 variable write value

… … … Word

(unsigne

d)

…

[m] … … Word

(unsigne

d)

B[n] variable write value

(m=36864+n)
n is the B variable

index.

… … … Word

(unsigne

d)

…

37114 0x90FA MW371 Word B250 variable write value

354

Address Address Variable

Name

Data

Type
Description Remarks

DEC HEX

14 (unsigne

d)

37115 0x90FB MW371

15

Word

(unsigne

d)

B251 variable write value

37116 0x90FC MW371

16

Word

(unsigne

d)

B252 variable write value

37117 0x90FD MW371

17

Word

(unsigne

d)

B253 variable write value

37118 0x90FE MW371

18

Word

(unsigne

d)

B254 variable write value

37119 0x90FF MW371

19

Word

(unsigne

d)

B255 variable write value

37120 0x9100 MW371

20

Double

word

(signed)

Low byte of value written by R0

variable

37121 0x9101 MW371

21

High byte of value written by

R0 variable

37122 0x9102 MW371

22

Double

word

(signed)

Low byte of value written by R0

variable

37123 0x9103 MW371

23

High byte of value written by

R0 variable

… … … …

[m] Double

Word

(signed)

Low byte of value written by

R[n] variable (m=37120+2*n)

[m+1] … … High byte of value written by

R[n] variable (m=37120+2*n)

n is the R variable

index.

… … … …

37628 0x92FC MW376

28

Double

word

(signed)

Low byte of value written by

R254 variable

37629 0x92FD MW376

29

High byte of value written by

R254 variable

37630 0x92FE MW376

30

Double

word

(signed)

Low byte of value written by

R255 variable

37631 0x92FF MW376

31

High byte of value written by

R255 variable

37632 0x9300 MW376

32

Double-

precision

floating

Lowest byte of value written by

D0 variable

37633 0x9301 MW376 Low byte of value written by D0

355

Address Address Variable

Name

Data

Type
Description Remarks

DEC HEX

33 point variable

37634 0x9302 MW376

34

High byte of value written by

D0 variable

37635 0x9303 MW376

35

Highest byte of value written by

D0 variable

37636 0x9304 MW376

36

Double-

precision

floating

point

Lowest byte of value written by

D1 variable

37637 0x9305 MW376

37

Low byte of value written by D1

variable

37638 0x9306 MW376

38

High byte of value written by

D1 variable

37639 0x9307 MW376

39

Highest byte of value written by

D1 variable

… … … … …

[m] … MW[m] Double-

precision

floating

point

Lowest byte of value written by

D[n] variable (m=37632+n*4)

n is the D variable

index.

[m+1] … MW[m+

1]

Low byte of value written by

D[n] variable

[m+2] MW[m+

2]

High byte of value written by

D[n] variable

[m+3] MW[m+

3]

Highest byte of value written by

D[n] variable

… … … … …

38644 0x96F4 MW386

44

Double-

precision

floating

point

Lowest byte of value written by

D253 variable

38645 0x96F5 MW386

45

High byte of value written by

D253 variable

38646 0x96F6 MW386

46

Low byte of value written by

D253 variable

38647 0x96F7 MW386

47

Highest byte of value written by

D253 variable

38648 0x96F8 MW386

48

Double-

precision

floating

point

Lowest byte of value written by

D254 variable

38649 0x96F9 MW386

49

High byte of value written by

D254 variable

38650 0x96FA MW386

50

Low byte of value written by

D254 variable

38651 0x96FB MW386

51

Highest byte of value written by

D254 variable

38652 0x96FC MW386

52

Double-

precision

Lowest byte of value written by

D255 variable

356

Address Address Variable

Name

Data

Type
Description Remarks

DEC HEX

38653 0x96FD MW386

53

floating

point

High byte of value written by

D255 variable

38654 0x96FE MW386

54

Low byte of value written by

D255 variable

38655 0x96FF MW386

55

Highest byte of value written by

D255 variable

… … Word Reserved

49152
MW491

52
Word

User-defined

… … Word

65535 0xFFFF
MW655

35
Word

Appendix 4: Servo Commissioning

1) Description

1.1) Communication links and ports:

Standard Ethernet link, Ethernet port on the controller.

1.2) Module functions:

Servo data supports all functions, DSP data supports only functions 1-4.

No. Function Description

1
Import and export of

waveform files

Supports the export of waveform data and

simultaneous export of multi-channel waveform

data.

Supports import of data file with suffix .inoparam

and display of waveforms.

2
Continuous

oscilloscope

Supports the continuous data acquisition function

of the oscilloscope as well as the waveform display

function.

3 Waveform analyzer

Supports functions such as waveform selection,

dragging, scaling, adaptation, horizontal and

vertical scale adjustment, FFT analysis, waveform

comparison, coordinate value measurement, and

cursor value measurement.

4 Trigger Oscilloscope

Supports the setting of channel data collection

conditions, trigger conditions: rising edge/falling

edge/edge change/above/below the level, trigger

level setting, pre-trigger setting (%), number of

conditions: 2, condition relationship: single

357

condition, two conditions (and, or)

5

Parameters and

operating status

monitoring

Supports the monitoring of commonly used servo

parameters and operating status of robots (error,

ready, run, no ready, EtherCAT state machine)

6 Servo commissioning

Supports servo usability adjustment, tuning, fault

management, I/O settings, servo parameter list,

speed JOG, position JOG, homing, bus motor

parameters, data monitoring and other functions.

7
Running status

monitoring

Displays running status on the interface: servo

alarm error, servo drive status (ready, run, no

ready), servo EtherCAT state machine (1248)

8 Log Log file in xxx format.

9 Historical fault records
Reads and displays the last 10 fault records for each

axis

1.3) Description of the module function

1.4.1) Continuous oscilloscope

The oscilloscope includes servo oscilloscope and DSP oscilloscope.

1.4.1.1) Servo continuous oscilloscope

(Specifications in this Section refer to SV660N Servo Drive Software Specification

V1.2.docx)

The range of data that a servo continuous oscilloscope can display is as follows.

No. Data Name Source

1 Bit monitoring channel (signals such as servo I/O) Servo

2 Position reference Servo

3 Position feedback Servo

4 Position following error (position deviation) Servo

5 Speed reference Servo

6 Speed feedback Servo

7 Torque reference Servo

8 Current feedback Servo

9 Bus voltage Servo

10 U-phase feedback current Servo

11 V-phase feedback current Servo

12 W-phase feedback current Servo

13 d-axis current feedback Servo

14 Control word (received by servo) Servo

15 Status word (sent from servo) Servo

16 Average load rate Servo

17 Input reference pulse counter Servo

18 Current absolute position Servo

19 Resonance auto-tuning results Servo

20 Inertia auto-tuning results Servo

358

21 Tracking deviation of position reference unit Servo

22 Real-time target absolute position Servo

23 Real-time target absolute speed Servo

24 Real-time target absolute torque Servo

The indicators of the servo continuous oscilloscope are as follows.

No. Indicator Description

1 Sampling interval 1ms to 100ms

2 Maximum number of supported

channels

8

3 Transfer data type 16-Bit, 32-bit

4 Channel configuration Each channel can be configured with

any sampling data for any axis

(repeatable sampling data

configuration options for multiple

channels)

Supports channel settings: The

visibility, scale, color, vertical scale,

etc. for each channel can be set. The

longitudinal movement of waveform

is also supported.

5 Waveform acquisition start and stop Start and stop buttons are provided.

When the stop button is pressed, the

waveform acquisition stops and is

displayed automatically.

6 Waveform display time range The horizontal timeline can be set,

with a range of 300ms to 30000ms.

1.4.1.2) DSP Continuous oscilloscope

The range of data that a DSP continuous oscilloscope can display is as follows.

No. Data Name Source

1 Running line number (float) DSP

2 Running status DSP

3 Common DI DSP

4 Common Do DSP

5 Torque feedback (per axis) DSP

6 Planed angle (per axis) DSP

7 Feedback angle (per axis) DSP

8 Control word (planned by DSP) (per axis) DSP

9 Status word (received by DSP) (per axis) DSP

10 Internal planning status DSP

11 Stop mode (per axis) DSP

12 System DI DSP

359

13 System DO DSP

14 Emergency stop mode DSP

15 Position in Cartesian space (6) DSP

16 Speed in Cartesian space (6) DSP

17 DSP alarm code DSP

18 Servo gain (*3 per axis) DSP

The indicators of the DSP continuous oscilloscope are as follows.

No. Indicator Description

1 Sampling interval 1ms to 100ms

2 Maximum number of supported

channels

8

3 Transfer data type 16-Bit, 32-bit

1.4.2) Import and export of waveform files

Supports the export of waveform data and simultaneous export of multi-channel

waveform data.

Supports import of data file with suffix ".inoparam" and display of waveforms.

1.4.3) Waveform analyzer

 Supports functions such as waveform selection, dragging, scaling, adaptation,

horizontal and vertical scale adjustment, FFT analysis, waveform comparison, coordinate

value measurement, and cursor value measurement.

1.4.4) Trigger oscilloscope

(Specifications in this Section refer to SV660N Servo Drive Software Specification

V1.2.docx)

The trigger setting supports single or two trigger conditions, as shown below.

The trigger condition can be set to condition A, condition B, both conditions A and B,

or condition A or B.

 The trigger object can be set to channel variables, DI bit variables, DO bit variables.

The trigger conditions include: rising edge/falling edge/edge change/above level/below

level.

Trigger level setting

Pre-trigger setting (%)

1.4.4) Parameter monitoring

360

The parameter monitoring function is divided into servo parameter and DSP

parameter monitoring, and their specifications are as follows.

1.4.4.1) Servo parameter monitoring

It supports the monitoring of servo parameter data commonly used by robots, the

data contents are as follows.

No. Description Param

eter

Dictionar

y Object

Unit Range Length

1 Servo software

version (J1 axis to

J6 axis)

H0100 2001h-01h 1 0 to 65535 Uint16

2 Servo software

non-standard

version (J1 axis to

J6 axis)

H0002 2000h-03h 1 0 to 65535 Uint32

3 Encoder software

version (J1 axis to

J6 axis)

H0004 2000h-05h 1 0 to 65535 Uint16

4 Motor model (J1

axis to J6 axis)

H0000 2000h-01h 1 0 to 65535 Uint16

5 Servo model (J1

axis to J6 axis)

H0102 2001h-03h 1 0 to 65535 Uint16

6 Absolute position

mode (J1 axis to J6

axis)

H0201 2002-02h 1 0 to 2 Uint16

7 Actual motor speed

(J1 axis to J6 axis)

H0B00 200Bh-01h rpm -9000 to +9000 int16

8 Average load rate

(J1 axis to J6 axis)

H0B12 200Bh-0D

h

0.1% -3000 to +3000 Uint16

9 Absolute position

feedback (J1 axis

to J6 axis)

H0B17 200Bh-12h Enco

der

unit

-231 to +231 int32

10 Encoder multi-turn

data (J1 axis to J6

axis)

H0B70 200Bh-47h Turn -32767 to

+32767

Uint16

11 Encoder single-turn

data (J1 axis to J6

axis)

H0B71 200Bh-48h Enco

der

unit

-231 to +231 int32

12 Servo fault code

(J1 axis to J6 axis)

H0B34 200Bh-23h 1 0 to 65535 Uint16

13 Servo Sub-fault

code (J1 axis to J6

axis)

H0B45 200Bh-2E

h

1 0 to 65535 Uint16

14 Encoder sub-fault H0B28 200Bh-1D 1 0 to 65535 Uint16

361

1.4.4.2) DSP parameter Monitoring

It supports monitoring of commonly used DSP parameter data, the data contents are

shown in the table below.

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

1 Running

line

number

R0010 1 1 short Read-only

2 Running

status

R0020 1 0 1 short Read-only

3 DSP

alarm

code

R0030 1 0x2000 0x6000 unsigned

int

Read-only

4 Emergenc

y stop

mode

R0040 1 0 2 short Read-only

5 DSP

internal

planning

status

R0050 1 0 1 short Read-only

6 J1 axis

torque

R0101 0.10% -5000 5000 float Read-only

code (J1 axis to J6

axis)

h

15 Torque feedback

(J1 axis to J6 axis)

 6077h 0.1% -5000 to +5000 int16

16 Target position (J1

axis to J6 axis)

 607Ah Refer

ence

unit

-231 to +231 int32

17 Position feedback

(J1 axis to J6 axis)

 6064h Enco

der

unit

-231 to +231 int32

18 Gear ratio (J1 axis

to J6 axis)

 6091-01h

6091-02h

1 0 to 232-1 Uint32

Uint32

19 Position deviation

(J1 axis to J6 axis)

 60F4 Refer

ence

unit

-231 to +231 int32

20 Excessive position

deviation threshold

(J1 axis to J6 axis)

 6065 Refer

ence

unit

0 to 232-1 Uint32

362

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

feedback

12 J1 axis

planned

angle

R0102 ° -250 250 float Read-only

18 J1 axis

actual

angle

R0103 ° -250 250 float Read-only

24 J1 axis

stop mode

R0104 1 0 9 short Read-only

30 J1 axis

servo

control

word

R0105 1 0 65535 unsigned

short

Read-only

36 J1 axis

servo

status

word

R0106 1 0 0xFFFF unsigned

short

Read-only

42 J1 axis

servo

position

loop gain

R0107 0.1Hz 0 20000 unsigned

short

Read-only

43 J1 axis

servo

speed

loop gain

R0108 0.1Hz 1 20000 unsigned

short

Read-only

44 J1 axis

servo

current

loop gain

R0109 0.10% 0 2000 unsigned

short

Read-only

7 J2 axis

torque

feedback

R0201 0.10% -5000 5000 float Read-only

13 J2 axis

planned

angle

R0202 ° -250 250 float Read-only

19 J2 axis R0203 ° -250 250 float Read-only

363

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

actual

angle

25 J2 axis

stop mode

R0204 1 0 9 short Read-only

31 J2 axis

servo

control

word

R0205 1 0 65535 unsigned

short

Read-only

37 J2 axis

servo

status

word

R0206 1 0 0xFFFF unsigned

short

Read-only

45 J2 axis

servo

position

loop gain

R0207 0.1Hz 0 20000 unsigned

short

Read-only

46 J2 axis

servo

speed

loop gain

R0208 0.1Hz 1 20000 unsigned

short

Read-only

47 J2 axis

servo

current

loop gain

R0209 0.10% 0 2000 unsigned

short

Read-only

8 J3 axis

torque

feedback

R0301 0.10% -5000 5000 float Read-only

14 J3 axis

planned

angle

R0302 ° -6000 360 float Read-only

20 J3 axis

actual

angle

R0303 ° -6000 360 float Read-only

26 J3 axis

stop mode

R0304 1 0 9 short Read-only

32 J3 axis R0305 1 0 65535 unsigned Read-only

364

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

servo

control

word

short

38 J3 axis

servo

status

word

R0306 1 0 0xFFFF unsigned

short

Read-only

48 J3 axis

servo

position

loop gain

R0307 0.1Hz 0 20000 unsigned

short

Read-only

49 J3 axis

servo

speed

loop gain

R0308 0.1Hz 1 20000 unsigned

short

Read-only

50 J3 axis

servo

current

loop gain

R0309 0.10% 0 2000 unsigned

short

Read-only

9 J4 axis

torque

feedback

R0401 0.10% -5000 5000 float Read-only

15 J4 axis

planned

angle

R0402 ° -540 540 float Read-only

21 J4 axis

actual

angle

R0403 ° -540 540 float Read-only

27 J4 axis

stop mode

R0404 1 0 9 short Read-only

33 J4 axis

servo

control

word

R0405 1 0 65535 unsigned

short

Read-only

39 J4 axis

servo

R0406 1 0 0xFFFF unsigned

short

Read-only

365

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

status

word

51 J4 axis

servo

position

loop gain

R0407 0.1Hz 0 20000 unsigned

short

Read-only

52 J4 axis

servo

speed

loop gain

R0408 0.1Hz 1 20000 unsigned

short

Read-only

53 J4 axis

servo

current

loop gain

R0409 0.10% 0 2000 unsigned

short

Read-only

10 J5 axis

torque

feedback

R0501 0.10% -5000 5000 float Read-only

16 J5 axis

planned

angle

R0502 ° -180 180 float Read-only

22 J5 axis

actual

angle

R0503 ° -180 180 float Read-only

28 J5 axis

stop mode

R0504 1 0 9 short Read-only

34 J5 axis

servo

control

word

R0505 1 0 65535 unsigned

short

Read-only

40 J5 axis

servo

status

word

R0506 1 0 0xFFFF unsigned

short

Read-only

54 J5 axis

servo

position

R0507 0.1Hz 0 20000 unsigned

short

Read-only

366

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

loop gain

55 J5 axis

servo

speed

loop gain

R0508 0.1Hz 1 20000 unsigned

short

Read-only

56 J5 axis

servo

current

loop gain

R0509 0.10% 0 2000 unsigned

short

Read-only

11 J6 axis

torque

feedback

R0601 0.10% -5000 5000 float Read-only

17 J6 axis

planned

angle

R0602 ° -540 540 float Read-only

23 J6 axis

actual

angle

R0603 ° -540 540 float Read-only

29 J6 axis

stop mode

R0604 1 0 9 short Read-only

35 J6 axis

servo

control

word

R0605 1 0 65535 unsigned

short

Read-only

41 J6 axis

servo

status

word

R0606 1 0 0xFFFF unsigned

short

Read-only

57 J6 axis

servo

position

loop gain

R0607 0.1Hz 0 20000 unsigned

short

Read-only

58 J6 axis

servo

speed

loop gain

R0608 0.1Hz 1 20000 unsigned

short

Read-only

367

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

59 J6 axis

servo

current

loop gain

R0609 0.10% 0 2000 unsigned

short

Read-only

60 Cartesian

spatial

position x

R1001 mm -4000 4000 float Read-only

61 Cartesian

spatial

position y

R1002 mm -4000 4000 float Read-only

62 Cartesian

spatial

position z

R1003 mm -4000 4000 float Read-only

63 Cartesian

spatial

orientatio

n Rz

R1101 ° -180 180 float Read-only

64 Cartesian

spatial

orientatio

n Ry

R1102 ° -180 180 float Read-only

65 Cartesian

spatial

orientatio

n Rx

R1103 ° -180 180 float Read-only

66 Cartesian

spatial

position

speed Vx

R1201 mm/s -4000 4000 float Read-only

67 Cartesian

spatial

position

speed Vy

R1202 mm/s -4000 4000 float Read-only

68 Cartesian

spatial

position

R1203 mm/s -4000 4000 float Read-only

368

No. Descripti

on

Paramete

r

Unit Min.

Value

Max.

Value

Data Type Change

Method

speed Vz

69 Cartesian

spatial

pose

speed Wx

R1301 °/s -100 100 float Read-only

70 Cartesian

spatial

pose

speed Wy

R1302 °/s -100 100 float Read-only

71 Cartesian

spatial

pose

speed Wz

R1303 °/s -100 100 float Read-only

72 First 32

bits of

common

DI

R2001 1 0 0xfffffff

f

unsigned

int

Read-only

73 Last 32

bits of

common

DI

R2002 1 0 0xfffffff

f

unsigned

int

Read-only

74 First 32

bits of

common

DO

R3001 1 0 0xfffffff

f

unsigned

int

Read-only

75 Last 32

bits of

common

DO

R3002 1 0 0xfffffff

f

unsigned

int

Read-only

76 System DI R2000 1 0 0xffff unsigned

short

Read-only

77 System

DO

R3000 1 0 0xffff unsigned

short

Read-only

The DSP parameters are defined as follows:

There are 77 DSP parameters RXXXX, with R indicating robot, the first 8 digits of XXXX

indicating item category, and the last 8 bits indicating function type. The item category is divided

into four major categories: miscellaneous, axis (J1-J6), Cartesian, and DI/DO. The miscellaneous

369

(00) contains four function types such as DSP running line number (10), running state (20), etc.

The axis (01-06) represents J1-J6 axes. The functions are subdivided into 9 function types such as

torque feedback (01), planning angle (02), etc., Cartesian (10-13) and DI/DO (20,30) are shown in

the table.

1.4.5) Servo commissioning function

1.4.5.1) Servo parameter list

Description:

 Static attributes of the servo parameters and upload and download of current

values.

After the servo parameters are uploaded, the background color is highlighted

(gray) when the current value is different from the default value.

When downloading the servo parameters (not yet downloaded), the background

color is highlighted (purple) if the current input value is different from the default

value.

Parameter list:

 Conforms to the parameter list in the general servo background software.

1.4.5.2) Speed JOG

(Specifications in this Section refer to SV660N Servo Drive Software Specification

V1.2.docx)

Description: The robot jogs according to the preset speed. Verify that the motor

rotates correctly.

Specifications:

1. The servo is automatically disabled if no operation is performed, protection time

2s.

2. Speed range: 0 to the maximum motor speed.

1.4.5.3) Bus motor parameters

(Specifications in this Section refer to SV660N Servo Drive Software Specification

V1.2.docx)

Description:

 1. Static attributes of the motor parameters and upload and download of current

values.

2. After the servo parameters are uploaded, the background color is highlighted

(gray) when the current value is different from the default value.

3. When downloading the servo parameters (not yet downloaded), the

background color is highlighted (purple) if the current input value is different from

the default value.

1.4.5.3) Mechanical characteristics analysis

(Specifications in this Section refer to SV660N Servo Drive Software Specification

V1.2.docx)

Description:

 Locate the mechanical resonance point by scanning the waveform.

Specifications:

370

1. The servo is automatically disabled if no operation is performed, protection

time 2s.

2. Bode plot is output by background.

1.4.6) Running status monitoring

The following running status is displayed:

1. Servo alarm (error);

2. Servo drive status (ready, run, no ready);

3. Servo EtherCAT state machine (1, 2, 4, 8).

1.4.7) Log

The error log is saved to a local directory.

1.4.7) Fault Management

(Specifications in this Section refer to SV660N Servo Drive Software Specification

V1.2.docx)

Description:

Reports current and historical equipment faults, gives all possible causes and

solutions, and provides a reset function.

A total of 10 current and historical fault records of the servo, including the fault code, time

stamp, fault name, the cause of the fault and the action to be taken.

Appendix 5: Simple Calculation of Load

Parameters

When the load is a simple geometry, or is close to a simple geometry, its inertia parameters

can be calculated using a simple scheme. The formula for calculating the inertia of

common geometry is as follows.

Description Moment of Inertia Remarks

Thick

cylinder open

at both ends,

with inner

diameter 𝑟1,

outer

diameter 𝑟2,

height h,

mass m.

𝐼𝑧 =
1

2
𝑚(𝑟1

2 + 𝑟2
2)

𝐼𝑥 = 𝐼𝑦 =
1

12
𝑚[3(𝑟1

2 + 𝑟2
2) + ℎ2]

Solid cylinder

with radius r,

height h, and

mass m.

𝐼𝑧 =
1

2
𝑚𝑟2

𝐼𝑥 = 𝐼𝑦 =
1

12
𝑚(3𝑟2 + ℎ2)

The special

case when

the cylinder

satisfies

371

𝑟1 = 0.

Solid sphere

with radius r

and mass m.

𝐼 =
2

5
𝑚𝑟2

Solid cuboid

with height h,

width w,

length d, and

mass m.

𝐼ℎ =
1

12
𝑚(𝑤2 + 𝑑2)

𝐼𝑤 =
1

12
𝑚(ℎ2 + 𝑑2)

𝐼𝑑 =
1

12
𝑚(𝑤2 + ℎ2)

Moment of

inertia of a

cube with

side length s

𝐼𝐶𝑀 =
𝑚𝑠2

6
.

Thin rod with

length L and

mass m.

𝐼𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑚𝐿2

12

The special

case when

the solid

cuboid has

w=L, h=d=0.

